The Unified Neutral Theory of Biodiversity and Biogeography

chapitre 6 : The Unified Neutral Theory and Dynamical Species-Area Relationships

Stephen P. Hubbell (2001)

Atelier de lecture CIRAD - 11/12/08

- Théorie neutre (*zero-sum ecological drift*) prédit la dynamique de la communauté locale et de la métacommunauté
- Distribution d'abondance relative et richesse spécifique déterminée par 3 paramètres :
 - $\theta = 2J_M \nu$ indice fondamental de biodiversité
 - (J_M taille de la métacommunauté et ν taux de spéciation)
 - *m* taux d'immigration (métacommunauté \rightarrow communauté locale)
 - J taille de la communauté locale
- Pas de notion d'espace occupé par la métacommunauté

Contenu du chapitre

- Traitement explicite de l'espace dans la théorie unifiée
- Prédictions par la théorie neutre des relations aire-espèces :

A l'aide de la relation

 $J = \rho A$

J nombre d'individus A aire occupée ρ densité (espace saturé en individus)

courbes espèces-individus \Rightarrow courbes espèces-aire

Espace CONTINU

Relation aire-espèces

Courbe triphasique

en log-log Preston (1960)

Avifaune

 relation aire-espèces obéit à des règles différentes selon l'échelle spatiale

 Explication de la diversité spécifique selon l'échelle spatiale :

Schmida & Wilson (1985)

Plantes

Explication par la théorie neutre d'Hubbell

Log Area

Taux de rencontre des nouvelles espèces sensible

- Echelle locale : à l'abondance relative
- Echelle régionale : aux taux de spéciation, de dispersion et d'extinction

 Echelle continentale : à "l'ampleur de la corrélation" (*correlation length*) des processus dynamiques des différentes unités biogéographiques

Log Area

< ロ > < 同 > < 回 > < 回 > < 回 > <

크

 Relation espèces-individus : on tire aléatoirement dans la métacommunauté (à l'équilibre suivant une *zero-sum ecological drift*) un échantillon de *J* individus (à partir de *Pr*{*S*, *n*₁, *n*₂, · · · , *n*_{*S*}} cf. chapitre 5) nombre d'espèces *S* dans cet échantillon :

$$E[S|\theta, J] = \frac{\theta}{\theta} + \frac{\theta}{\theta+1} + \frac{\theta}{\theta+2} + \ldots + \frac{\theta}{\theta+J-1}$$
$$E[S|\theta, J] = \sum_{i=1}^{J} \frac{\theta}{\theta+i-1}$$
$$= F_{\theta}(J)$$

• Relation aire-espèces : par substitution ($J = \rho A$)

$$E[S|\theta,\rho,A] = F_{\theta}(\rho A)$$

*Justification du α de Fisher

Première justification du α de Fisher par un modèle de dynamique

Formule d'accumulation des Neutre (0 espèces de Fisher : 15 $S(\alpha) = \alpha \cdot ln\left(1 + \frac{J_M}{\alpha}\right)$ 10 s Quand $J_M \longrightarrow \infty$, $S(\alpha) \approx_{\infty} \alpha \cdot ln\left(\frac{J_M}{\alpha}\right)$ Relation espèces-individu : 2000 4000 8000 $F_{ heta}(J) pprox 1 + heta \cdot ln\left(1 + rac{J_M - 1}{ heta}
ight)$ Quand $J_M \longrightarrow \infty$, $S(\theta) = F_{\theta}(J) \approx_{\infty} \theta \cdot ln\left(\frac{J_M}{\theta}\right)$ Quand $J_M \longrightarrow \infty$. $\alpha \cong \theta$

Ajustement de la relation aire-espèces

Bon ajustement

genre Diospyros : dispersion locale (limitée)

Pas d'ajustement même si θ varie

 Prise en compte de la dispersion dans le modèle neutre Nouveau paramètre : le taux de dispersion ω

Log Area

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< 3

• Relation linéaire d'Arrhénius (1921)

 $S = cA^z$

loi puissance

$$\Leftrightarrow \textit{InS} = \textit{Inc} + \mathbf{z} \cdot \textit{InA}$$

c et **z** (pente) constantes ajustées aux données *S* nombre d'espèces *A* surface échantillonnée

Log Area

Incorporation du processus de dispersion

- Incorporation du processus de dispersion :
 - Quand A → ∞ (et J → ∞) la dispersion devient de plus en plus limitée donc la probabilité qu'une mort locale soit remplacée par un immigrant diminue, donc m → 0

 \implies m(J) est une fonction monotone décroissante

► Equation d'Arrhénius : $S = cA^z$ si $c = \rho^z \iff S = (\rho A)^z \iff S = J^z$

m(*J*) ≈ *J*^{-ω} : *m* diminue quand *J* augmente à un taux moyen ω
 Formule d'approximation :

$$\begin{split} \mathsf{E}[S|\theta, J, \omega] &= \mathsf{F}_{\theta, \omega}(J) \approx \frac{\theta \cdot 1^{-\omega}}{\theta} + \frac{\theta \cdot 2^{-\omega}}{\theta + 1} + \ldots + \frac{\theta \cdot J^{-\omega}}{\theta + J - 1} \\ &\approx \sum_{i=1}^{J} \frac{\theta \cdot i^{-\omega}}{\theta + i - 1} \end{split}$$

Ajustement avec $m = J^{-\omega}$

Exemple : données de BCI (arbres >10cm)

Limitation de la dispersion abaisse la pente de la courbe aire-espèces

- dispersion non limitée : distribution aléatoire des espèces dans l'espace
- quand l'aire /, le taux de migration \ et la proportion d'espèces à dispersion limitée /

< ロ > < 同 > < 回 > < 回 > < 回 > <

크

Correlation length

- Effet négatif puis positif de la dispersion limitée sur le taux d'accumulation des espèces quand l'aire augmente
- distribution spatiale des espèces structurée par les capacités de dispersion :

quand on passe d'un domaine biogéographique A à un domaine B, le taux de rencontre des nouvelles espèces augmente brusquement

• *Correlation length* (*L*) : distance séparant des domaines biogéographiques ayant leur propre dynamique

Intersection entre les tangentes de la pente à l'échelle régionale et la pente à l'échelle continentale

< <p>I > < </p>

Modèle de simulation inspiré du "*voter model*" de Durett & Levin (1996)

- Hypothèses
 - rightarrow Grille de communauté locale de taille J > 1
 - ► (x, y) coordonnées de la communauté locale
 - Remplacement des morts de la communauté locale (x, y)
 - par des naissances locales
 - par des immigrants venant des 8 communautés locales voisines (de (x 1, y 1) à (x + 1, y + 1))
 - *m* probabilité d'immigration des communautés voisines, PAS de la métacommunauté

• Probabilités d'abondance de l'espèce i

$$Pr\{N_i(x,y) - 1 | N_i(x,y)\} = \frac{N_i(x,y)}{J} \bigg[\nu + (1 - \nu) \bigg\{ m \bigg[1 + \frac{N_i(x,y)}{8J} - \sum_{x'=x-1}^{x+1} \sum_{y'=y-1}^{y+1} \frac{N_i(x',y')}{8J} \bigg] + (1 - m) \bigg(\frac{J - N_i(x,y)}{J - 1} \bigg) \bigg\} \bigg]$$

▲ 同 ▶ ▲ 目

Dynamique des effectifs des espèces (2)

$$Pr\{N_{i}(x, y)|N_{i}(x, y)\} = \frac{N_{i}(x, y)}{J}(1 - \nu)\left\{m\left[\sum_{x'=x-1}^{x+1}\sum_{y'=y-1}^{y+1}\frac{N_{i}(x', y')}{8J} - \frac{N_{i}(x, y)}{8J}\right] + (1 - m)\left[\frac{N_{i}(x, y) - 1}{J - 1}\right]\right\} + \frac{J - N_{i}(x, y)}{J} \\ \times \left[\nu + (1 - \nu)\left\{m\left[1 + \frac{N_{i}(xy)}{8J} - \sum_{x'=x-1}^{x+1}\sum_{y'=y-1}^{y+1}\frac{N_{i}(x', y')}{8J}\right] + (1 - m)\left(\frac{J - N_{i}(x, y)}{J - 1}\right)\right\}\right]$$

$$Pr\{N_i(x,y) + 1 | N_i(x,y)\} = \frac{J - N_i(x,y)}{J} (1-\nu) \left\{ m \left[\sum_{x'=x-1}^{x+1} \sum_{y'=y-1}^{y+1} \frac{N_i(x',y')}{8J} - \frac{N_i(x,y)}{8J} \right] + (1-m) \left[\frac{N_i(x,y) - 1}{J - 1} \right] \right\}$$

イロト イ団ト イヨト イヨ

크

Simulation

A l'équilibre, la distribution de la diversité de la métacommunauté est

Etat initial : diversité infinie

Même état d'équilibre unique

- Converge plus rapidement à partir d'une diversité infinie à t = 0
- déterminée uniquement par 3 paramètres
 - θ indice fondamental de biodiversité
 - J taille de la communauté locale
 - m probabilité d'immigration des communautés voisines