
Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Using volume-weighted average wood specific gravity of trees reduces bias
in aboveground biomass predictions from forest volume data

Le Bienfaiteur Takougoum Saganga,c,⁎, Stéphane Takoudjou Momoa,b, Moses Bakonck Libalaha,b,
Vivien Rossid, Noël Fontond, Gislain II Mofacka, Narcisse Guy Kamdema,
Victor François Nguetsopc, Bonaventure Sonkéa, Ploton Pierreb, Nicolas Barbierb

a Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé,
Cameroon
bAMAP, IRD, CNRS, INRA, Univ Montpellier, CIRAD, Montpellier, France
c Laboratory of Applied Botany, Faculty of Sciences, University of Dschang, Dschang, Cameroon
d Commission des Forêts d’Afrique Centrale (COMIFAC), Yaoundé BP 2572, Cameroon

A R T I C L E I N F O

Keywords:
Wood specific gravity
Terrestrial LiDAR
Aboveground biomass
Linear model
Error propagation
Cameroon eastern forest
Remote sensing

A B S T R A C T

With the improvement of remote sensing techniques for forest inventory application such as terrestrial LiDAR,
tree volume can now be measured directly, without resorting to allometric equations. However, wood specific
gravity (WSG) remains a crucial factor for converting these precise volume measurements into unbiased biomass
estimates. In addition to this WSG values obtained from samples collected at the base of the tree (WSGBase) or
from global repositories such as Dryad (WSGDryad) can be substantially biased relative to the overall tree value.
Our aim was to assess and mitigate error propagation at tree and stand level using a pragmatic approach that
could be generalized to National Forest Inventories or other carbon assessment efforts based on measured vo-
lumetric data. In the semi-deciduous forests of Eastern Cameroon, we destructively sampled 130 trees belonging
to 15 species mostly represented by large trees (up to 45Mg). We also used stand-level dendrometric parameters
from 21 1-ha plots inventoried in the same area to propagate the tree-level bias at the plot level. A new de-
scriptor, volume average-weighted WSG (WWSG) of the tree was computed by weighting the WSG of tree
compartments by their relative volume prior to summing at tree level. As WWSG cannot be assessed non-de-
structively, linear models were adjusted to predict field WWSG and revealed that a combination of WSGDryad,
diameter at breast height (DBH) and species stem morphology (Sm) were significant predictors explaining to-
gether 72% of WWSG variation. At tree level, estimating tree aboveground biomass using WSGBase and WSGDryad

yielded overestimations of 10% and 7% respectively whereas predicted WWSG only produced an under-
estimation of less than 1%. At stand-level, WSGBase and WSGDryad gave an average simulated bias of 9%
(S.D.= ±7) and 3% (S.D.= ±7) respectively whereas predicted WWSG reduced the bias by up to 0.1%
(S.D.= ±8). We also observed that the stand-level bias obtained with WSGBase and WSGDryad decreased with
total plot size and plot area. The systematic bias induced by WSGBase and WSGDryad for biomass estimations using
measured volumes are clearly not negligible but yet generally overlooked. A simple corrective approach such as
the one proposed with our predictive WWSG model is liable to improve the precision of remote sensing-based
approaches for broader scale biomass estimations.

1. Introduction

Above ground biomass in tropical forests constitute a major com-
ponent of the global carbon cycle, but our ability to measure and pre-
dicts its carbon stocks and dynamics is limited (Chave et al., 2014;
Fayolle et al., 2014). In an effort to conserve tropical forests, the United
Nations Framework Convention on Climate Change (UNFCCC) has

developed a mechanism called Reducing Emissions from Deforestation
and Forest Degradation in tropical countries (REDD+). There is high
interest in seeing such initiatives take form, but a key limitation for
successful implementation of REDD+ lies in the lack of reliable
methods for quantifying forest aboveground biomass (AGB) over large
areas (Gibbs et al., 2007; Joseph et al., 2013). Sample-based (Maniatis
et al., 2011) or remote sensing (RS) based (Ploton et al., 2017) methods
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both rely on AGB estimations in forest sample plots to derive larger
scale estimations. Chave et al. (2004) reported four types of un-
certainties that could lead to statistical error in plot AGB estimates: (i)
error due to tree measurement; (ii) error due to the choice of an allo-
metric model relating AGB to other tree dimensions; (iii) sampling
uncertainty, related to the size of the study plot; (iv) representativeness
of a network of small plots across a vast forest landscape. Most allo-
metric models for biomass estimation are based on three variables: tree
diameter at breast height, tree height and wood specific gravity (WSG).
The latter refers to the oven-dried mass of a wood sample divided by its
green volume (Williamson and Wiemann, 2010). The two first variables
serve to assess tree volume, while WSG allows converting this volume
into a mass. Such models are in general calibrated using datasets
(global) of destructively sampled trees, and only account for inter-
specific differences through the WSG variable.

We see that any methodological advance that could improve the
quality of volume and WSG estimations will help improve on (at least)
the two first sources of statistical errors reported by Chave et al. (2004).
With the increasing use of terrestrial LiDAR (Light Detection And
Ranging) technologies for forestry applications, and the improvement
of dedicated post-treatment algorithms, precise volume estimation at
tree or even plot level are now at hand (Ferraz et al., 2016; Hackenberg
et al., 2015; Momo et al., 2017; Stovall et al., 2017). A minima, it will be
possible to calibrate improved local allometric models, possibly ac-
counting for structural variations between species or group of species.
Eventually, it is expected that volumes will be directly extracted in
routine from stand level scans, eliminating the need for allometric
equations altogether (Calders et al., 2015; Disney et al., 2018).

A crucial deadlock will remain, however, in the proper estimation of
WSG. As WSG is rarely measured in the field and most studies (Gourlet-
Fleury et al., 2013; Slik et al., 2013; Bastin et al., 2015a; Alvaro et al.,
2017) use species-average WSG values extracted from global re-
positories such as Dryad (Chave et al., 2009; Zanne et al., 2009).

Yet, variation in WSG have been observed between individuals of
the same species, along the length of individual tree trunk (Wassenberg
et al., 2015), between trunk and branches (Swenson and Enquist, 2008)
and from the heartwood to the bark (Bastin et al., 2015b; Nock et al.,
2009; Osazuwa-Peters et al., 2014). As a consequence, the use of global
repositories (Zanne et al., 2009) can lead to marked bias in local stu-
dies; for instance, an overestimation of the wood specific gravity of
approximately 16% for the species community was obtained at the
forest stand level in Madagascar (Ramananantoandro et al., 2015).
When WSG is measured on site, it is generally via increment cores or
wood disc samples collected at a given distance from the ground on the
tree trunk. Therefore, such samples ignore any vertical variation that
may exist within the tree. As global biomass allometric models were
often calibrated using global WSG repositories, it is likely that sys-
tematic bias are in fact compensated through the parameters of the
allometric equations themselves (Picard et al., 2015). As a result, pre-
dictions of allometric equations would not be biased, as long as the
same repositories are used to provide WSG values, or as long as simi-
larly biased protocoles are used to obtain local WSG data (e.g. coring
from the stem base). However, this would not be the case for ap-
proaches aiming at direcly converting tree volumes (e.g. from terrestrial
LiDAR data) into biomass. Here, WSG values for each tree compatrment
would be needed, or at least some tree level unbiased estimate of WSG.
Ideally the estimator should be individual and account for vertical and
radial variations. Approaching this ideal WSG would require taking
complete increment cores (i.e. on at least a full diameter) in all tree
compartments, followed by a volume-weighted average across com-
partments to obtain the tree-level volume weighted average WSG
(WWSG), and this for each individual tree in a census. Obviously, the
measurements required to reach this estimate can hardly be done on a
standing tree, even less so in the frame of an operational, large scale
application. The alternative is to look for simple correction models
based on available WSG data (samples from the tree base or from

Dryad) and the morphology of trees.
In this study, we used a dataset of 130 trees destructively sampled in

south-eastern Cameroon, with a consequent representation of large
trees of DBH > 50 cm (52% of dataset) as well as 21 ha of forest in-
ventory performed in the same location to (i) compare WWSG of trees
with radially-averaged WSG extracted at breast height (i.e. 1.3m) or
with species-level WSG from Dryad repository; (ii) propose a new
practical model to predict WWSG; and (iii) determine the bias yielded
when estimating the aboveground biomass from those different WSG
sources at the tree- and plot-level.

2. Material and methods

2.1. Study site

Data were collected in south-eastern Cameroon, within Forest
Management Units (FMU) 10–051 and 10–53. The FMUs were located
between 3°41′59″ and 4°3′43″N, and 14°14′36″ and 14°34′38″E.
Average annual rainfall in the area varies between 1500 and 2000mm,
with three to four months of dry season (monthly rainfall < 100mm).
The average monthly temperature oscillates around 24 °C. Altitude
varies between 600 and 760m. The study site lies on Precambrian rocks
with deep ferralitic red to yellowish soils. Terra firme forests in the area
are characterized by a mix of evergreen and semi-deciduous species
dominated by Cannabaceae and Malvaceae families (hence “mixed-for-
ests“, Letouzey, 1968), and classified as semi-deciduous Celtis forests
(Fayolle et al., 2014).

2.2. Species and trees sampling scheme

A total of 130 trees belonging to 15 species of 8 families were
sampled (Table 1). Two selection criteria were employed: the first cri-
terion included species relative abundance, which was obtained from
existing forest management inventory data provided by the logging
company; the second criterion was species mean WSG, derived from the
Global Wood Density (GWD) database (Zanne et al., 2009) hereafter
referred to as Dryad database. Each of the species retained were
grouped into 6 WSG classes as follows: ≥0.4 g.cm−3; [0.4–0.5[;
[0.5–0.6[; [0.6–0.7[; [0.7–0.8 [ and ≥0.8 g.cm−3. Trees were equally
distributed into six diameter classes following a 10 cm interval class
width from 10 to 50 cm, then three other diameter classes were used for
large trees: ]50–100] cm, ]100–150] cm and> 150 cm. This metho-
dology was established by the Regional Project for the strengthening of
the institutional capacities on the REDD+ initiative of the Commission
of Central African Forest (PREREDD+ – COMIFAC). Field campaigns
were carried out from July 2015 to December 2016.

2.3. Field data collection

Before felling a tree, we measured the DBH at 1.3m above the
ground or 30 cm above the top of the last buttress.

After felling the tree, we measured trunk length (from ground-level
up to lowest major living branch) and total tree length (up to the ap-
parent crown tip) so to document species morphology: short-bole spe-
cies (with the ratio between bole height and crown depth< 1) and tall-
bole species (with the ratio between bole height and crown depth>1;
see Appendix A). Tree stump was then cut at ground level and the bole
and crown were chunked into 1 to 2m long sections as described by
Picard et al. (2012). The tree was subdivided into seven compartments:
1= stump; 2= lower portion of the bole with buttresses; 3= bole;
4= large crown sections (∅≥ 20 cm, with ∅ the basal section dia-
meter); 5=medium-sized crown sections (5≥∅ < 20 cm); 6= small
crown sections (∅ < 5 cm) and 7= leaves and reproductive parts. For
sections with ∅≤ 70 cm, fresh masses were directly weighed in the
field using a Crane electronic (3000 kg capacity, precision of 0.5 kg).
For sections with ∅ > 70 cm, basal diameter, distal diameter and
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length were measured, so to derive fresh masses from sections’ volume
(see 2.4 – Volumes estimation) and specific gravity (see 2.4 – Wood
specific gravity estimation). The fresh mass of leaves and reproductive
parts was measured with a 300 kg capacity Crane electronic scale
having a precision of 0.1 kg.

A 30–50mm thick cross-sectional disc sample was extracted from
each woody compartment of the tree. For discs with diameter greater
than 20 cm, two opposite wedge-shaped samples were kept, stretching
from the pith to the bark (according to the methodology defined in
PREREDD+ project) to take into consideration radial variations (bark,
sapwood and heartwood). Each wedge-shaped sample was immediately
weighed in the field with a 5000 g capacity mechanic scale with a
nominal precision of 25 g, whereas samples extracted from the crown
were weighted with a 100 g capacity mechanic scale having a precision
of 10 g. The samples were then sealed in a plastic bag to avoid water
loss in preparation to determine the fresh volume in the laboratory.

2.4. Laboratory analyses

2.4.1. Volumes estimation
The volume of each woody compartment (Vc in m3) was computed

as the sum of compartment’s sections volume (denoted vs, in m3). Each
vs was estimated using Smalian’s formula (Pardé and Bouchon, 1988):

= + × ×v B b L{( ) 0.5}s (1)

where B is section’s basal cross-sectional area (m2), b is section’s distal
cross-sectional area (m2) and L is section’s length (m).

For correct determination of the cross-sectional area of sections with
an irregular shape, the cross-sectional area was estimated by digita-
lizing their photographic images (Vincke, 2011). Photographs were
taken with a Nikon 5 X digital camera and the cross-sectional area was
obtained using Qgis (version 2.8) as described by Daphné and Philippe
(2014). Summing all compartments’ volumes gave the total tree volume
VT (m3);

∑=
=

V VT
j

n

c
1

i ij
(2)

where Vcij is the volume of compartment j of tree i (m3).

2.4.2. Wood specific gravity estimation
For each wood sample taken to the laboratory, the fresh mass and

other weigh measurements were made with a Kern and Sohn electronic
scale (5 kg capacity and precision of 0.001 g). The fresh volume was

determined by water displacement method (Vieilledent et al., 2012)
following Archimedes Principle. The sample was then oven dried at
105 °C and its dry mass was obtained after three days or more, once
mass measurements made every 6 h presented less than 1% differences.
Sample WSG was calculated as its dry mass divided by its fresh volume.
Moisture content (MC) was calculated as the difference between fresh
and dry masses per unit fresh mass ([fresh mass – dry mass]/fresh
mass).

2.5. Statistical analyses

For each woody compartment j, a volume-weighted wood specific
gravity (WWSGj) was calculated as the product of WSGj (WSGj is the
average of the WSG of all the samples collected in that compartment j)
and the compartment’s volume Vcj (m

3) relative to the entire tree vo-
lume, VT (m3):

= ×WWSG WSG
V
Vj j

c

T

j

(3)

A weighted average wood specific gravity at the tree level (WWSG)
was then obtained by summing all WWSGj of that tree and was used for
biomass predictions.

Estimating WWSG was possible in this study thanks to a complete
destructive sampling of tree, mass and volume estimation of all com-
partments, and laboratory measurements made on wood samples for all
compartments. To allow the non-destructive estimation of WWSG, we
calibrated linear prediction models using the tree diameter at breast
height (DBH), the index of stem morphology (Sm); the speciesWSG from
Dryad database (WSGDryad); and the individual WSG sampled at ap-
proximately breast height (WSGBase) as independent variables and
WWSG as the dependent variable. Model selection was achieved using
the Akaike’s information criterion (AIC), the coefficient of determina-
tion (R2) and the residual standard error (RSE) (Table 2).

Field AGB of each tree (AGBobsi in Mg), with i= 1,…,132, was ob-
tained by summing the dry masses of its different compartments. For
woody compartments with fresh mass, the dry mass was obtained via
the moisture content (dry mass= [fresh mass – (fresh mass×MC)]).
For compartments with fresh volumes, their dry mass was obtained
through the WSG of the compartment (dry weight=Vcij ×WSGj).
Leaves and reproductive organs were integrally weighed fresh in the
field. Samples were collected from each tree and then oven dried at
60–70 °C to constant mass to derive the moisture content.

Estimated AGB (AGBesti in Mg) values were obtained by multiplying

Table 1
Description of the destructive dataset: Species stem morphology (Sm; s= short-bole species; t= tall-bole species), number of sampled individuals (N), range of
diameter at breast height (DBH), mean and standard deviation of WSG from (i) Dryad database (WSGDryad), (ii) destructive samples obtained at approximately breast
height (WSGBase) and (iii) destructive samples obtained on the entire tree and weighted by the volume of the compartment they came from (WWSG, see 2.5 for
details).

Taxon Family Sm N DBH (cm)
Min-Max

Wood specific gravity (kgm−3)

WWSG S.D. WSGBase S.D. WSGDryad

Annickia chlorantha Annonaceae t 5 11.3–51 444.34 33.03 506.74 52.59 459.64
Baphia leptobotrys Fabaceae s 6 14.5–67 758.48 40.79 807.85 54.65 772.00
Cylicodiscus gabunensis Fabaceae t 11 13.5–159.5 645.25 97.33 796.23 101.85 778.84
Duboscia macrocarpa Malvaceae s 8 26.5–120.3 514.73 53.08 555.97 68.34 599.98
Entandrophragma cylindricum Meliaceae t 12 17.75–153.4 562.92 45.15 595.73 49.56 519.73
Eribromao blongum Malvaceae t 9 17.8–100.8 520.95 62.90 615.56 51.80 638.45
Erythrophleum suaveolens Fabaceae t 11 16.6–120.5 729.08 57.55 804.80 68.23 808.75
Macaranga barteri Euphorbiaceae s 5 17.2–53.5 348.04 19.79 361.74 48.06 381.79
Mansonia altissima Malvaceae t 7 19–74.56 509.06 20.44 529.70 30.65 723.23
Pentaclethra macrophylla Fabaceae s 5 11.5–112 669.96 185.86 805.69 207.85 702.48
Petersianthus macrocarpus Lecythidaceae t 10 14.7–74.5 548.70 53.08 601.44 58.98 608.25
Pterocarpus soyauxii Fabaceae t 10 11.6–94.3 559.02 50.46 692.19 43.98 626.89
Pycnanthus angolensis Myristicaceae t 8 14–95.2 387.33 44.75 450.51 32.03 408.90
Terminalia superba Combretaceae t 12 13–113.5 505.36 52.62 507.98 50.20 630.50
Triplochiton scleroxylon Malvaceae t 13 13.5–180.3 415.78 56.93 471.49 81.91 334.50
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the total tree volume (VT) by either WSGBase, WSGDryad or WWSG pre-
dicted from our linear models.

For each tree, AGBest values were compared to AGBobs (destructive)
values based on the mean of individual relative bias s (in %), which are
defined as follows:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×s AGB AGB
AGB

100i
est i obs i

obs i

. .

. (4)

For a model to be unbiased we expect the mean si (noted s) to be
close to zero.

Prediction errors at the tree level are expected to scale down at the
plot level as negative and positive errors compensate, yet this com-
pensation may be dependent on the actual tree mass distribution in the
sample plot if individual error systematically varies with tree mass. To
account for this source of error, we employed a simulation procedure
(Monte Carlo scheme) which propagates tree level AGB errors to plot
level (PAGB) in two steps (as in Ploton et al., 2016). We used census
data from 21 1-ha plots installed in the study area (Libalah et al., 2018)
to propagate AGB error from tree to plot level. Each plot was sub-
divided into 25 square quadrats of 20m side and the DBH of all trees
with DBH≥ 10 cm were measured. In total, 9 780 individuals were
censuced, with a maximum observed DBH of 253 cm. The first step of
the error propagation method consisted in attributing a simulated AGB
value to each tree in a given quadrat (AGBsim) corresponding to the
actual AGB of a similar felled tree selected in the destructive database
within the same DBH class value. The second step consisted in propa-
gating individual errors from a given WSG source using the local dis-
tribution of si values as predicted by a Loess regression; for each AGBsim,
we randomly drew a Ssim value. Thus, we generated for each plot a
realistic PAGBsim (i.e., based on observed felled trees) with repeated
realizations of a plot-level prediction error (in %) computed for n trees
as follows.

=
∑ ×

∑
=

=
S

s i AGB i
AGB i

( ( ) ( ))
( )plot

i
n

sim sim

i
n

sim

1

1 (5)

We computed the mean and the standard deviation of 1000 reali-
zations of the plot-level prediction error for each of the simulated plots.

All analyses were performed in R statistical software (RStudio Team,
2016). The package PMCMR (Pohlert, 2016) was used for pairwise
multiple comparisons of means.

3. Results

3.1. Comparison of wood specific gravity estimates

Comparing the three WSG estimates (WWSG, WSGBase and
WSGDryad) on15 species, we found that significant differences could be
detected at least between two WSG estimates for 11 species, with
WWSG being significantly lower than WSGBase and WSGDryad in 9 cases
(Fig. 1). On average, WWSG was approximately 11% lower than
WSGBase and 8% lower than WSGDryad.

Mean WSG variation from the stump to the small branches (com-
partment 1 to 7) showed a general decrease in all species (Appendix B)
except for Macaranga barteri, a light wooded species which presented
the opposite variation pattern. When plotting the distribution ofWWSGj

along tree species compartments (Appendix C), 11 species presented the
highest WWSGj value at the bole (compartment n°3) and the lowest
WWSGj in the stump (compartment n°1); the lower portion of the bole
(compartment n°2) and the crown. In contrast, 4 species Baphia lepto-
botrys; Duboscia macrocarpa; Macaranga. barteri and Pentaclethra mac-
rophylla presented highest WWSGj values in the crown compartments.

3.2. Models to predict WWSG

Among the six linear models tested to predict WWSG, the model
based on WSGBase, DBH and Sm (ie. model 3) yielded the best perfor-
mance (R2= 0.81, AIC=1436, Table 2). ReplacingWSGBase in model 3
by WSGDryad (model 6) led to a decrease in model fit (R2= 0.72;
AIC= 1491). As the purpose of the models is to propose one with
variables that are easily accessible and knowing that WSGBase is not
always easy to measure on the field, we focused on model 6 as our
reference model to predict WWSG.

3.3. Tree level biomass estimations

Estimating tree AGBest (derived from compartments-level volumes
and WSG) from total tree volume and WSGBase led to tree AGB over-
estimation of up to 10% (RMSE=1.8) as shown in Fig. 2a. Also, using
WSGDryad lead to tree AGB overestimation of up to 7% (RMSE=3,
Fig. 2b). However, using WWSG predicted from model 6 yielded the
lowest bias (s=−1%, Fig. 2c).

3.4. Plot-level error propagation

Using the simulation procedure, we propagated AGBest prediction
error to 1-ha plots and observed that mean biases obtained when using

Table 2
Linear prediction models for tree weighted average WSG (WWSG, kg m−3). Models were based on species WSG from Dryad database (WSGDryad, kg m−3), individual
WSG from the base of the tree (WSGBase, kgm−3) and structural parameters, namely diameter at breast height (DBH, cm) and species morphology (Sm). Classical
model fit metrics (R2, RSE, AIC) are provided along with model parameters and associated confidence intervals (95%).

Models Model parameters Model performance

a b c d R2 RSE AIC

1: WWSG=a+bWSGBase 90.31***

(46.62 134)
0.74***

(0.67 0.81)
0.77*** 60.1 1459

2: WWSG=a+bWSGBase+ cDBH 58.13***

(15.7 100.57)
0.73***

(0.66 0.79)
0.64***

(0.38 0.91)
0.8*** 55.5 1439

3: WWSG=a+bWSGBase+ cDBH+dSm 53.91***

(11.94 95.88)
0.72***

(0.66 0.79)
0.69***

(0.42 0.95)
27.81***

(3.09 52.53)
0.81*** 54.6 1436

4: WWSG=a+bWSGDryad 185.55***

(135.02 236.08)
0.6***

(0.52 0.68)
0.61*** 78.07 1529

5: WWSG=a+b WSGDryad+ cDBH 115.8***

(65.99 165.6)
0.62***

(0.54 0.69)
1.03***

(0.7 1.35)
0.7*** 68.81 1496

6: WWSG=a+bWSGDryad+ cDBH+dSm 106.15***

(57.07 155.23)
0.61**

(0.54 0.68)
1.09***

(0.76 1.41)
42.11***

(11.84 72.39)
0.72*** 67.12 1491

Significance codes: 0 “***”, 0.001 “**”, 0.01 “*”, 0.05 “.”, 0.1 “ “.
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WSGBase and WSGDryad were 9% (S.D.= ±7; Fig. 3a) and 3%
(S.D.= ±7; Fig. 3b) respectively. Using WWSG predicted from model
6 reduced the bias by up to 0.1% (S.D.= ±8; Fig. 3c) on estimated
plot AGB.

When looking at the mean plot bias by WSG source against plot size
(Fig. 4a), we observe a decreasing trend as the area of the plot increases
up to a plot area of 0.64 ha from which the bias is constant (solid grey
circles and solid black circles, respectively). When plotting AGB mean
bias in function of the plot AGB (Fig. 4b), we observe a general decrease
of bias as plot AGB increased for both WSGBase and WSGDryad whereas
the use ofWWSG predicted with model 6 yielded a lower bias which did
not appear to be correlated to plot AGB. Using WSGBase, and WSGDryad

in estimating AGB in small plots (ie.≤ 0.4 ha) led to an overestimation
of up to 15% and 11% respectively; this bias is reduced to 3% with

WWSG predicted from model 6. This bias yielded withWWSG predicted
from model 6 decreases down to 0.01% in 1 ha plots.

4. Discussion

Several studies have attempted to propose methods allowing to
obtain more reliable estimation of tree-level WSG from field measure-
ments (Bastin et al., 2015a,b; Deng et al., 2014; Osazuwa-Peters et al.,
2014), with the aim to reduce bias in biomass assessment. However
destructive datasets from tropical forests are relatively rare and not
distributed evenly across regions. Most existing studies were further-
more limited to WSG variations in stems, and only a few studies (Henry
et al., 2010) extended the sampling to tree crowns despite their im-
portant proportion in tropical trees volume and mass (Goodman et al.,

Fig. 1. Comparison betweenWWSG,WSGBase andWSGDryad across 15 species. Letters above each box represent the results of Kruskal-Wallis post hoc test, with similar
letters indicating that boxes mean values are not significantly different.

Fig. 2. Scatter plot of the estimated AGB from different WSG sources against field AGB. a= biomass predicted with WSGBase; b= biomass predicted with WSGDryad;
c= biomass estimated with WWSG predicted with model 6. The dotted line is the 1:1 line.
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2014; Ploton et al., 2016). Here, we benefited from a dataset featuring a
representative characterization of the specific richness of the sampling
area and comprising a significant number of large trees (52% of the
dataset with a DBH > 50 cm), and we could compute representative
estimates of tree-level WSG (ie. WWSG) based on volume-weighted
WSG on each tree compartment, from the stump to the crown, using a
systematic sampling along the tree. The WWSG was generally lower
than the tree basal WSG. This result is explained by the fact that most
sampled trees (93% in our study) presented a decreasing WSG upward
across tree compartments (Appendix B). Although some species may
present the opposite variation pattern (eg. Macaranga barteri in our
study), a decrease of WSG along the tree vertical profile seems to be a
general pattern at the community level (Melo et al., 2005; Sarmiento
et al., 2011; Swenson and Enquist, 2008). The WWSG was also found to
be lower than species-average WSG derived from Dryad database. In-
deed, wood samples gathered in repositories such as Dryad generally
originate from the breast height or from the bole (Zanne et al., 2009),
hence are subject to the same bias pattern as WSGBase. The difference
between WWSG and WSGDryad (or WSGBase), and ultimately the bias in

tree AGB estimate, is a function of the slope of tree WSG vertical profile
but also of the relative volumes of the tree compartments. Interestingly,
variations in species WSG vertical profile were to some extent com-
pensated by variations in species morphology (in terms of compart-
ments’ relative volumes), leading to more homogeneous distribution of
WWSGj. For instance, while Macaranga barteri showed an increasing
WSG from the stump to the crown, weighting compartments’ WSG by
compartments’ volume led to the typical pattern of WWSGj variation
(Appendix C-a), with a peak at the bole-level and in big size branches
followed by a decrease toward small branches. In fact, we differentiated
two WWSGj distribution strategies in the species sampled (Appendix C).
In most species, the bole presented the highest WWSG values except
Macaranga barteri, Baphia leptobotrys, Duboscia macrocarpa and Penta-
clethra macrophylla who had highest values in the crown (Appendix C f;
m, o). The latter four species were morphologically distinct (Appendix
A) with a bole that was under-represented compared to other species.

Our set of predictive models (Table 2) for WWSG were calibrated
across a set of 15 tree species in the specific context of semi-deciduous
forests in Eastern Cameroun and should be used with caution for other

Fig. 3. Frequency distributions of plot-level AGB relative bias (Splot, in%) resulting from the use of different WSG sources: WSGBase (caption a); WSGDryad (caption b)
and WWSG predicted from model 6 (caption c), Dashed vertical lines represent distributions mean.

Fig. 4. Plot-level AGB relative bias (Splot,%) as a function of plot area (caption a) and plot-level AGB (caption b). In caption a, plot size was set to 1-ha. In both
caption, each dot represents the mean bias of a given simulated plot over 1000 realizations. Simulated plot AGB predictions (PAGBsim) were made using different
WSG sources: WSGBase (solid grey circles) WSGDryad (solid black circle) and WWSG predicted from model 6 (solid white circles).

L.B.T. Sagang et al. Forest Ecology and Management 424 (2018) 519–528

524



tree species and sites. However, they provide good insights into the
feasibility of WWSG prediction as our best models based on WSGBase

(model 3) explained as much as 81% of the individual WWSG variation
and the one based on WSGDryad (model 6) explained as much as 72% of
the variation. The significant effects of the variables DBH and Sm in the
models suggest that the overall structure and size of trees should be
taken into account when estimating WWSG. Other factors not con-
sidered in this study could explain the remaining variability. Im-
provement of wood density estimation could for instance necessitate a
better accounting of tree life history (De Castro et al., 1993).

Depending on the WSG source used, we obtained an overestimation
of tree-level AGB of 10% on average when using WSGBase and 7% on
average when using WSGDryad, whereas using WWSG predicted from
model 6 yielded an average bias of only - 1%. It is worth stressing that
using WSGDryad does not induce a bias when tree AGB is estimated with
a biomass allometry model calibrated on WSGDryad (such as the pan-
tropical biomass model of Chave et al. 2014), because model’s coeffi-
cients account for the variation pattern between WSGDryad and WWSG.
However, this bias would propagate to AGB estimates when simply
converting volume to biomass, as it is the case when one uses terrestrial
LiDAR technologies to derive trees and forest AGB. Systematic differ-
ences in trees AGB derived from the two methods (ie. terrestrial LiDAR
– based vs allometry model-based) may partially be attributed to this
phenomenon (as in Gonzalez de Tanago et al., 2018).

Propagating tree-level AGB bias to the plot-level, we observed that
plot-level bias (Splot) was a function of plot AGB and plot size. Splot in-
creased as plot AGB and size decreased, although AGB overestimation
was systematic with both WSGBase and WSGDryad. At the 0.04 ha scale,
the error on plot AGB estimate induced using WSGDryad was higher than
11% on average. We thus proposed a solution to correct the errors
linked to plot size and complexity as encountered in LiDAR studies
(Bouvier, 2015; Rafael M et al., 2017) because using WWSG values
predicted from our model 6 significantly reduces the plot-level bias to
3% in small plots (0.04 ha) and 0.01% in 1 ha plots. The fact that bias
propagation is dependent on plot structure implies that the use of

uncorrected WSGBase and WSGDryad, for converting tree volumes into
biomass in broader scale studies e.g. within National Forest Inventories
or REDD+ scheme, will produce spatially structured errors, with dif-
ferent forest types having different overestimation levels.

5. Conclusion

In this study, species-level average WWSG was generally lower than
the WSG values recorded from Dryad and the basal WSG collected in
the field. It was also shown that linear models incorporating few vari-
ables i.e. general tree size and structure, especially Sm and DBH, allow to
accurately predict tree level WWSG. Therefore, estimating AGB with
predicted WWSG produced less biased estimates at the tree level re-
lative to WSGBase and WSGDryad, which generally overestimate AGB. At
the plot level, the bias yielded when predicting AGB with WSGBase and
WSGDryad was influenced by the size and total AGB of the plot; there was
a decreasing trend as the overall plot size and AGB increases. Predicted
WWSG values from our study produces plot-level estimation that are
both less biased and less sensitive to forest structure when converting
tree volume into biomass.
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Appendix A

Different tree morphologies presented by the species sampled regarding the proportion of the bole. a= tall-bole species (Terminalia superba); b
and c= short-bole species (Duboscia macrocarpa and Baphia leptobotrys respectively). Tree images are extracted from T-LiDAR scans.
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Appendix B

Vertical WSG profiles of the 15 species; X-axis shows the levels along the tree where wood samples were collected (1= stump base; 2= lower
portion of the bole with buttresses, 3= bole; 4= upper portion of the bole before the first main branches, 5=Big branches, 6=medium branches,
7= small branches), Y-axes shows the WSG. The black line represents the WSG best fit profile with 95% C.I (grey); the horizontal line represents the
species’ mean WSG and the dotted line represents the delimitation between the stem and crown.

Appendix C

WWSG distribution between woody compartments. 1= stump; 2= lower portion of the bole with buttresses, 3= bole; 4= big branches,
5=middle sized branches, 6= small branches. Macaranga barteri, Duboscia macrocarpa and Baphia leptobotys and Pentaclethra macrophylla present a
WWSG profile different from other species; the highest WWSG values are observed in the branches whereas in other species the highest values are on
the bole.
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