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Abstract— A Bayesian method for the comparison and selection framework for backpropagation [22], originally designed for
of multi-output feedforward neural network topology, based single output networks, comes within these approaches. For a
on the predictive capability, is proposed”. As a measure of gien neural model this Bayesian formalism leads to the so-
the prediction fitness potential, an expected utility criterion is . . . . .
considered which is consistently estimated by a sample-reusecallede\_"dence\’vh'Ch estimates how likely the_ model is given
computation. As opposed to classic point-prediction-based cross- the available dataset, and thus can be used in model selection.
validation methods, this expected utility is defined from the In the past recent years the MacKay’s paradigm has been used

logarithmic score of the neural model predictive probability in several applied fields, such as mathematical finance [25],
density. It is shown how the advocated choice of a conjugate [17], [40], for example.

probability distribution as prior for the parameters of a compet- H th h ¢ | critical int
ing network, allows a consistent approximation of the network owever (hese approaches present several crilical points

posterior predictive density. A comparison of the performances Such as the imprecise relationship between the generalization
of the proposed method with the performances of usual selection performance of the network and the advocated Bayesian selec-

procedures based on classic cross-validation and information- tion criteria [22], [36], the treatment of the hyperparameters
theoretic criteria, is performed first on a simulated case study, [9], [39], [23], the usually assumed independence of the weight
and then on a well-known food analysis dataset. T y .
_ Gaussian priors, and more crucially, scarcely controllable
Index Terms— Feedforward neural network, Bayesian model approximations of the posteriors. The evidence method for
selection, conjugate prior distribution, empirical Bayes methods, example relies on a critical Gaussian approximation of the pos-
expected utility criterion. . o - .
terior parameter distribution (in which the hyperparameters,
the weight decay terms, are fixed to the values maximizing
|. INTRODUCTION the evidence). It has been observed that this approximation
&reaks down when the ratio of the dataset size to the number
network parameters is too small [22], [36]. Markov chain
onte Carlo methods have been proposed to replace this

The issue of selecting a right network topology is one
the most debated in feedforward multilayer neural netwo

modeling. A bias/variance trade-off has to be satisfied [16],[ . imation [27 . Killed simulati
to get close to some optimal model complexity (number o aussian approxima lon [27], requiring now skilled simutation
ertise and greater computing.

layers and neurons) protecting as most as possible from bgﬁ'& | and statisticall iented thod th
contradictory effects of overfitting and underfitting. However, ore general and statistically oriented metnods are the
Prmatmn-theoretlc model comparison criteria [10] as

the d ics of the bi d vari i IpPr .
€ aynamics o € Dlas and variance errors can in gene)g%\alke,s A|C, B|C, Mallow’s Cp, RIC and NIC [26], which

be only estimated through estimation of a huge amount bi £ fit with Ity t ¢
varied neural network models and comparison on a test dg{ao combine some measure of Tit with a penaily term 1o
count for model complexity. However it has been observed

set, which is hardly feasible in practice. Less time-consumi A ding to the situati idered. th ; f
on-line and off-line strategies have then be proposed, whi according fo the situation considered, the periormance o
ese criteria is rather sensitive to the type of penalty [35]

belong to several classes, heuristically or more statisticaf)é . .
oriented. Constructive algorithms [19] come within the first pecially n th_e case of neural networks [.2]'. .
category, while more complex constructive-destructive meth-Ot.her. Stat'St'Ce.ll tools ,SUCh as ?symptotlc |nfergnt_|als tests,
ods often come within the second [30]. More general metho{¥ likelihood ratio, Wald's or Rao’s Lagrange multiplier tests

], can also be used to compare feedforward neural models

are the so-called regularization techniques [29], based ih licitl wicted to th . ¢ ted
implicit structure optimization [28]. They consider a fixeabu €y are explicitly restricted to the comparison ot heste
%ural models.

topology and they constrain the network parameters in sof inall f the still t attracti .
way, for example by adding penalty (or weight decay) terms dlna Y one_fo € ?' .n:os attractive coman?on pCri)/
to the cost function, in order to avoid saturation of the unit eaure, even 1 computer-intensive, 1s cross-validation (CV),

Regularization techniques using penalty term addition, c geause of its genericity anq !imited probgbility assumpt?on re-
be considered as statistically Bayesian since this penalty oaLHrementSe(.g. exchangeablllty assumptlon). However, it has
be associated with a prior probability on the weight an een shown that CV can be inconsistent (unless appropriate

. , ._data division is done, [34]), as are the methods asymptoticall

bias parameters [9]. The well-known MacKay’'s Bayesiah™ . ) [341) asymp y
equivalent to it ¢.g. AIC and C}). Moreover, CV is often too

The authors are with UMR Analyse des Syses et Bioratrie, INRA- CONservative and tends to select unnecessary large models.
ENSAM, 2 Place P. Viala, 34060 Montpellier, France To counteract these defects, a CV-like Bayesian nonlinear

1Th|s paper is a full extenspn of the cpntrlbuted papdultzoutput model comparison procedure, inspired by a classic utility
Feedforward Neural Network Selection: A Bayesian approach, given by the L. 61 h b d | d d adi d he i f
authors to the IEEE-INNS 2003 International Joint Conference on Neut%\"ter'on [6], has been developed and adjusted to the issue o

Networks (p.495-500 in the proceedings) the comparison of single-output feedforwad neural networks



[37]. An extension of this Bayesian approach to multiresponsdl. M ULTI-OUTPUT FEEDFORWARD NEURAL MODELING
regression models has been designed recently [31]. FRAMEWORK

The present paper proposes an adaptation of this approach o) _multl—ouput feedforvvard neur_al network deM IS a
the comparison of multioutput multilayer neural networks bipulti-résponse nonlinear regression model which under the
with a specific recourse to the Bayesian conjugate prior thedtySUmption of Gaussian additive errors, can be written as

and to the so-called empirical Bayes approach. This particular
Bayesian framework offers the advantage of allowing to intro- Model M :  y; = f(z:,0) + e @)

duce data-respectful priors with the possibility of a comple{gnere the nonlinear mapping results from the network

analytical treatment of the posterior and predictive densiti%pomgy with = as input vector and as parameter vector
Moreover, the method allows comparison of networks differingne set of all weights and biases of the network), [29].

by their respective topologies as well as by their input variabgg, ; (1,....n} 1y € R 2, € RY, 9 € © a compact
sets. For a given data set, this predictive network performangg,set om’q Ei’ ~ N,4(0,%) with ) c S c R wheres is
comparison approach can be used to select among neural §etsset of all positive definite symmetric matrices of dimension

of varied complexity the net achieving the best compromisg, ; e shall have to consider more often than the variance-
between complexity and generalization. As a matter of fact,dty/ariance matrix. the precision matrixA = %1

could seem that after several valuable works such as [27], [38}; s denote
for example, the predictive accuracy of a Bayesian network is
not sensitive to the number of hidden units (of course given®
enough units not to underfit) and that there is no need to try. Yim = (y yn) and o = (z )
optimizing their number and organization, provided sensible® “!" B 1(29}&;7:’_’5)" n oo n/:

priors and adequate posterior approximations are used for thé fz.0 = (=g, ) J € {1,...,¢}. We shall suppose
network parameters. However from a practical point of view that Fhese derivatives exist for all the neural networks
and from that of the general non Bayesian neural net user, considered.

there is still a need of simple efficient standard neural net

comparison and selection tools, sufficiently generic to relievéther notations :

as much as possible of any specialized and controversiab Vq(‘[1, ¥) : the g-dimensional Gaussian probability den-
issues as hierarchisation of net parameters, relevant choices Sity With expectatior and covariance matrix.

of parameter and hyperparameter priors, efficient design ofe Wia(‘|a,3) : the d-dimensional Wishart density with
posterior approximations and relieving also of the specialized Parametersy and .

simulating estimation apparatus they involvedg( MCMC ~ * Sta(-|p, ¥, a) : the d-dimensional Student density with
techniques). parameterg:, ¥ anda.

« To alleviate notations, integration with respecttand A
In this spirit, this paper puts the emphasis on a general over their whole membership sétx S, will be denoted
analytical approach, leading to a well known closed form  throughout the paper byf instead of f@xs_
for a consistent approximation of the neural net predictive gjen 7, and a setM of J feedforward neural models
density and confining all nhumerical aspects only to the fin?yw"j =1,...,J}, with E(y|M7,z) = fi(z,07), the issue
evaluation of the proposed utility criterion. of interest is to select the best neural moddl;, in some
predictive sense.

Zn = (zi,y:),i=1,...,n, the available data set, made
of n i.i.d random data pointéz, y).

The paper is organized as follows. In Section Il the statis-
tical framework of the neural model selection problem is set  Ill. THE EXPECTEDUTILITY-BASED CRITERION

up. In Section 11l the building elements of the expected-utility- To do this selection we follow thewazimum — expected —
based criterion are considered. Convergent approximatiognsiity approach [6] for which the optimal model choicelis*

of the parameter posterior and posterior predictive densiych that

ties, allowing the sample-reuse calculation of the expected

utility, are developed in Section IV. Section V shows how u(M*|Z,) = sup w(M|Z,) 2)
this predictive density estimation procedure can easily be MieM

adapted to take full account of the structural multi-modalityhere

of the likelihood function of a feedforward neural model. In

Section VI this Bayesian procedure is applied to a simulated

predictive neural network selection problem and then to a well a(M7|Z,,) = /u(Mj, v, z|Zn)p ((z,9)|Zy) dydz  (3)
known bench-mark test in spectroscopy. The performances

of the procedure are compared with that of AIC, BIC anth which w(M7,y,x|Z,) is a given utility function and
classic CV procedures. Appendix | briefly recalls elements pf((x, y)|Z,) is a probability density representing actual be-
Bayesian theory used in the construction of the expected utilltgfs about(z, y) having observed’,,.

criterion. Appendix Il provides the proofs of the convergendBut p ((z,y)|Z,) in (3) is generally not available. We
of the approximations of the required parameter posterior atiten search for a consistent estimateu¢f\/’|Z,,) for each
posterior predictive densities used in the criterion. M7 € M. Following Bernardo and Smith [6] we consider the



n partitions of Z,,: Z,, = [Zn—1(i), (z;,y;)] for 1 < i < mn,

where Z,,_ (i) denotes the data séf, after withdrawal of

the data point(z;,y;). If we selectk of these data points  P(ylz, T, 2Zn) = /P(y|$,9,/\)29(9a/\|7a Zp)dodA  (9)

at random (without replacement), we have by the strong law

of large numbers under regular assumptionspas grow to  In (9) p(y|x, 0, A) is given by model (1) ang (6, A|7, Z,)

infinity [6], [31] is a (6, A) posterior probability density witt¥ a vector of
hyperparameters. Thi®, A) posterior density is obtained by

. _ Bayes’ theorem from a give(?, A) prior densityp(6, A|T):
S (M i, il 2 (1)

— [u(M,y, 2| Z,)p ((x,y)| Z,) dyda| == 0 DOAT.Z)) = - PEl0NpOAT)
’ o [ p(Z,10,A)p(0, A|T)dOdA

The expected utility of modeM”? € M can then be consis-
tently approximated by For a given(d, A) prior, the computation of the posterior (10)

is generally untractable. One possible approach to consistenly
estimate (9) is to use a technique of Bayesian learning for
neural network. These techniques are base@ofi) sampling

) ) ) from an MCMC p(0, A|T, Z,) posterior density estimation
Furthermore as we are interested in comparing models f“{ﬁée for example [18], [12], [20]). However, such MCMC

a predictive distribution point of view, as suggested in [6] Wgtegrations frequently suffer from instability [15] which can

k
1 . .
Uy = & o ulM o, a1l Zua (0) @
=1

take as utility function the logarithmic score impair the relevance of the final utility criterion estimation.
i ; In addition, another major and preliminary difficulty of this
u(M?,y,x|Zy,) = logp(y|M?, z, Z,) (®)  Bayesian training approach is of course tfigA) prior choice

In (5) p(y| M7, =, Zy,) is the posterior predictive density undeftself, Whigh in spi_te o_f several _attractive approaches [21],

model M/ of a response atz, given the past observatioss, [27], remains a crmca_l issue lacking from a general response
and an appropriate prior density for the neural network mod@®Sy to handle _espemally for non Bayesians. These difficulties
M7 parameters. Let us note that with this choice for the utilidd Us to consider an analytical treatment of the parameter
function, (4) is similar to the predictive sample reuse criterigposterior and predictive posterior d_ensmes estimations, from
of [14] which considers the product of conditional predictivé Well known class of parameter priors.

densities.

We then decide to take dd* the modelM’ € M maximizing A (6, A) prior density

1 F _ Let us note that under the assumptions of model (1) the
U, = Z Zlogp (yil M7, 5, Zn—1 (1)) (6) probability density of(yi.,|z1.n,60,A) belongs to the expo-
i=1 nential family:

This procedure selects on a sample-reuse basis, the model
under which the data sét, achieves the highest level of some

internal consistency: the best model is that which on the whole, P(Yrn[T1:m, 0, )

. . . . n/2 n
most favors the likelihood of each observation with respect to Al { 1 2 }
= ———56exXpy — = i — f(x;,0
the others. (2m)nd/2 b 9 ; lys = f (i, 0)lI2
The next section will be devoted to the calculation of a con- 1 n
vergent approximatiop of the parameter posterior predictive = e¢xg(6,A) x exp{ — ftr[( Zyl yg) A}
densityp, for each neural network mod@dl/’, leading to the 2 i=1
practical criterion n
) +3° fla 9)’Ayi} (11)
~ 1 . i=1
Uj == logp (yil M7, 24, Zy 1 (i) (7
k z:zl with ¢ = W and g(6,A) = |A|"/? exp{ —

such that, giverk 1y ||f(177:,9)||%}.

This suggests to take 48, A) prior density theconjugate
density with respect to the likelihood(y.,|%1.n, 0, A), thus
ensuring tractability of the related posterior. Actually, the

IV. POSTERIOR PREDICTIVE DENSITIESA CONSISTENT  fyndamental advantage of a conjugate prior density is to

APPROXIMATION provide very easily the related posterior density since, because

In order to compute (6) we need a posterior predictivef a closure property, both densities belong to the same family
density for the response at a given under modelM7, of probability distribution [3].
conditional to the training se¥,,, for eachM? ¢ M. From (11) and by definition of conjugate families for regu-
For a given networkM as in (1), such a posterior is definedar exponential families of probability distributions, we have
by easily

(7]‘ [t Uj a.s. (8)



p(0,A[T)
= KT g0, A exp { — 5or[Ti A]

n

+3° i 0)ATS )

i=1

—1[A|T0n 0 ¢
KIT) A 2 exp { = 23 [1£(i.0) 13
i=1

+;f(mi,9)’z\7; - %tr [71 AH

with 7; a d x d symmetric matrix,7; a R? vector for
i = 1,...,n, K[T]7! a normalizing constant and =
(10, T1, T3, ..., 73"), a set of hyperparameters.
Interpretation ofp(6, A|7) : see final remark of IV.C.

12)

B. (6, A) posterior density

e a=nTy+2

« B(T)=35>0, (Tof(ﬂfiﬁo)f(ﬂ?i,@o)' — f(x4,00) T —
Tzif(xz'ﬂo)') +3T

e 0y = argming det [Z?:l (T; /7o —
7(@.0)) ]

p(Y1:n]T1:m, T) IS then asymptotically maximized by

f(fﬂi»@)) (Tzi/To -

=1, 17T =

Zyzyl, 7y =

a setting under which, and3(7) are equal td,, and — A

y'L’ - )""n (17)

WhereH andA are the maximum likelihood estlmates of
and A and given by [33]:

n

argneindet {Z (yi = fl@i, 9)) (yl - flai, 0))/}

=1

o~

b, =

Under modelM the parameter posterior density assouate]g LR

to the priorp(8, A|T) is then given by (see Appendix I):

p(9> A|Z7l7 T) = p(a, AlT + t(ylzn))

Wlth T+t(y1n) = (TO+1> 7’1—"_2?:1 yzy;a 7—214'917 sy
yn)
From (12) and (13) we have

(13)
T+

p(0,A|Z,,T)

T0 + 1 -
5 2 I 03
=1

—1 |A‘(TQ+1)TL/2

xexp{f

n

+3 Flan, 0) AT +v2)

=1

—%tr [(Tl + ; Yiy;) A} }

(14)

At this point, we have to decide how to treat the hyperpa-p(e’ AlZ,) = KnlA| eXp{ Z i =

— *Z(yl_ (2,0 ))(yi_f(xi’é”))/

An intuitive idea of this optimal setting can be reached from
(15) by Seeing thap(yl:n‘xl:n77) < p(yl:n|x1:na9naAn)-
The maximization ofp(y1.,|z1.n,7) Will be favored, asn
grows to infinity, by choosing a setting f&f such that the
prior density p(f, A|7) loads more and more in priority a
neighborhood of(on,An) A simple look at (12) and (11)
shows that this will be achieved by the setting (17). Let us
note that this setting is related to the so-called empirical Bayes
approach [24].

From now on, we shall only consider the setting (17) for
the hyperparameters and thds will not appear any more

in the expression of the prior and posterior densities of the
parameters. We then have from (14)

(18)

fendlR} (29)

rameters?Z : we could try to integrate them out but under the

problematic choice of a second level prior and other possibiéere K, = K~'[T + t(y1.,)] is the normalizing constant.
drawbacks [23]. In the present case, a more tractable digwever with a parameter posterior as (19) the computation
natural approach is to optimize them by maximizing the pri¢ the posterior predictive density (9) will be intractable for

density of the observations themselves:

(|10, T) = / (il 1m, 6, A)p(6, AIT)dOAA (15)

It can be shown that

p(y1:n|$1:n77) = Hn 1P(%|$z, )
n—oo

S N (il (@ 00). 5B(T) 7 )26)

where theith factor in the right-hand side is the value at
of the d-dimensional normal denS|ty with medgfiz;, 6y) and
inverse covariance matrlxﬁ( )~1, with

a general neural modgl. Let us consider then a convergent
approximation ofp(6, A|Z,,) allowing the computation of a
convergent approximation gf(y|x, Z,,) under model)M.

C. A L;-convergent approximation of the parameter posterior
density
Let H be the following set of assumptions for model:
H, z; € X a compact subset di!, i = 1,.
H, The model functionf(z, 0) is of cIassC1 both inz and
0 (this assumption is satisfied by usual networks with
differentiable transfert function in their units).
Let p(0,A]Z,) =
A d+1
N, (8160, Vo YWia (Al + 5=

3 (20)

»VA)



with Let

Va = i i — f(@6,00))(yi — f(zi,00))
. .. with p(0, A|Z,,) a L,-convergent approximation of the param-
Let us recall now that under general conditions there exist "“@Eer(e A) posterior density.

valuesf, and A, to which the maximum likelihood estimates,,q
under modelM, 6, and A,,, converge almost surely with

[38], [1]. These values are the true parameter values when,
model M is the correct one. When modéll is incorrect pyle,0,A) =
(which is always the case for neural network modelling of

actual data)f. and A, are the parameter values minimizing  Theorem 2:Under assumption®{
the Kullback-Leibler information criterion between the true

(z,y) data distribution and théz,y) distribution induced  lim / ‘ﬁ(ylw,Zn)—p(ylx, Zn)
by model M. Moreover the parameter posterior distribution

concentrates around these limit valugsA., (see [4], [5] and Now takep(h, A|Z,,) as equal tg)(6, A|Z,,) as given by (20),

. N . —1
— n I ~
Vo = (2 Zizlfzi,gn/\nfm,en) Plylz, Zn) = / Plylz, 0, \)p(0, A|Z,)dodA  (25)

|A|1/2
(27‘-)d/2

exp{ Sl — 703} (@6)

dy =0 a.s. (27)

especially [1] for details). and let
The following lemma extends this concentration property to  n41.
the distribution of density(6, A|Z,,). Pn(ylz, Zn) = Sta(ylf(x,0,), An.2n+2)  (28)

n
Lemma 1:Suppose assumptiofts are satisfied. Letl be a
measurable set @ x S which contains an open neighborhood

of the limit parameter value§.., A.). Then

lim P(A) =1 as. JE&/ Pu(yle, Zn) = plyle, Zn) |dy =0 a5 (29)

. . ) ) Proof: bringingp(6, A|Z,,) = p(0, A|Z,,) into (25) with (26),
where P is the probability measure associated with thg,4s easily to (28).

densityp(0, A|Z,,).

Corollary 1: Under assumptiofi{

A tractable convergent approximatigiiy|z, Z,,) of the pos-
terior predictive densityp(y|x, Z,) under modelM is now
available, which can be applied to eachAmoMa?I € M. Ac-
cording to (7), a consistent approximatiof of the expected
utility of model M7 can now be computed, fgr=1,...,J.

This lemma ensures the consistency fgb, A|Z,,), i.e. its
asymptotic concentration &b.., A,).

Theorem 1:Under assumption(

lim /|ﬁ(9,A|Zn) — p(6,A|Z,)[d6dA = 0 ws. (21) V. MANAGING THE NEURAL MODEL LIKELIHOOD
n—o0 MULTI-MODALITY
The posterior predictive density approximation proposed in

Remark: In the same way it could have been shown that - ; F )
the previous section to compute the expected utility approxi-

/'ﬁ(@,A) —p(Q,A)‘deA " s, (22) mationU of a given neural model/, assumes that, in (18)
is the argument of the minimum of the/quadratic cost function

with det {Z?Zl gyi—f(xi,ﬁ)) (yi—f(xiﬁ) or equivalently the
50,A) = argument of the maximum of the related likelihood. It has been

. 1 1 shown that for a general likelihood function the uniqueness of
N, (9|9n, 2V9) Wig (A|§(n +d+1), §VA) (23) this optimum is ultimately satisfied under regularity conditions
as the data set sizeincreases [13]. But for a multilayer per-
(23) shows that unsurprisingly the conjugate pi¢f, A|7)  ceptron model there are always several families of equivalent
with the setting (17) takes the form of a “data-respectfufpcal optima. These families are connected with two types
distribution forn SUffiCiently |al’ge. Most remarkable is thatof Symmetry transformation Corresponding to parameter-sign
the form of this prior approximation and that of the posteriafhanges and neuron interchanges [11]. These transformations
(20) a|SO I‘eSpeCt the usual Bayesian ChOiceS for th|S k|nfé%d to equivalent network input-output mappings_ More pre_
of parameters, confirming thus the interest of this conjugai®sely, for a H-hidden-layer network withm;, neurons on
approach. layer h, the overall symmetry factor is SE TI}=m,,12mn
[37]. This shows that each local mode of the likelihood
D. A L,-convergent approximation of the posterior predictivéunction (or local minima of the sum of squares surface)
density belongs to a class of SF equivalent optima. The total number
TNC of such classes can hardly be analytically determined in
general. But a reasonable exploration of the network parameter
space can reveal the NC most attractive of such classes. The
plyla, Zn) = /p(y\m,@,A)p(G,MZn)dedA (24) missing remaining classes, of lower attractiveness and lower

By definition



contribution to the topology of the likelihood surface, will notilogn, where K is the total number of the neural model
have much consequence forsufficiently large. parameters andl(én,fxn) is the neural model maximum
Let éc,s be the location of thet” local likelihood optimum likelihood.

within the gth class, withl < ¢ < NC and1 < s < SF. The MSEP is defined as MSEP= Zf\inﬂ (yi —
Let p(0,Al6.s) and p(8,A|Z,,, 0. ) be the parameter prior N\ A

and p(aran‘wefe)r poster(ior a|pproxim)ations computed respectivé(f“e")) Q7 i~ f (zi’an)>’ afte.r the network has been
from (23) and (20), fol,, = gc’s' trained on the first data subset of size

Under the assumption that the overlap between all the priopr
densitiesﬁ(e,A\éc,s) is negligible and that the N& SF local "™
optima have all the same probability of being reached by theL€t us consider the following nine feedforward fully
parameter estimation procedure, it can be shown that a réRnnected neural structures with three inputs 2, * and
able approximation of the neural network posterior predictiV/0 outputsy', y*:

density is instead of (28) given by

A simulated case study

o NNi: one hidden layer of i neurons (6i+2 parameters),
NC NC i:1,-~-,6.. )
Pylz, Zn) = (1/2 Kc) ZKcﬁ(y\fc, Z.,0.) (30)  © N6NS3:two hidden layers of 6 and 3 neurons respectively
iy oy (53 parameters).
where o N6N8: two hidden layers of 6 and 8 neurons respectively
(98 parameters).

* p(ylz, Zy,0c) is given by (28) in whiché. can be  , N7N10: two hidden layers of 7 and 10 neurons
taken as any of the SF equivalent local optimal arguments  egpectively (130 parameters).

O.s, 1 <s<SF.
N = 1000 data points were independently and identically

_ A i simulated from network NN5 for a given set of parameter
o e = /p(ylz”‘xl’”’Q’A)p(g’ch)dadA values, withz! ~ U[—10, 10], 22 ~ N (3,52), 2% ~ U[-1, 7]
(gﬂ)%ﬂw Hdﬂp(ajL 5) and an additive Gaussian noiseon the two outputsg ~
= J= 2 B o5 with 5 | L7508
o] O.Z)with &= 05" o5 |

ith _ di1 q _ The firstn = 500 data points were used to compute the scores
Wi a = n+ 5 / and v = 37, (y’ ~  reached by the nine networks according to the U, CV, AIC and
f(zs, éc)> (yz — flz, éc)> = nK;l. BIC criteria respectively. The remaining 500 data points were

Let us note that under the same assumption the minimuuﬁc,]ed to compute the MSEP of each network on this test data

squared error loss prediction of the neural networkzat sub;:et. All the results are sh_ow_n in Table | (winn_ing Scores
given Z,, is given by the mean of the posterior predictiv%{e in bold. Note that the U-criterion has to be max_|m_|z_ed and
density (30) e other three ones gnd the MSEP have to be minimized).
The U and CV-criteria select the right network, NN5, as

NC NC does the MSEP on the test data. However, one can note that

Ve, 2, = <1/ZKC> Zch(x,éc) (32) the score reached by NN5 contrasts with those of the other
e=1 e=1 eight networks more sharply according to the U-criterion than

according to the CV-criterion and even than according to the
VI. CASE STUDIES MSEP. On the other hand, AIC and BIC behave very badly,

The U-criterion as given by (7) has been compared wiffy simply ranking the networks according to their growing
usual model selection criteria able to deal with correlat€@mplexity. Table II concisely sums up these behaviours
multioutput responses, on a simulated and on an actual nedi¥pugh the pairwise Wilcoxon rank correlation coefficients
network selection problem. In each of the following case studgf the criteria and the MSEP on the test data set.

N is the size of the available dataset, from whicHata points TABLE |
are sampled at random to compute the U-criterion (7) with ScorinGs OF THE NINE NEURAL MODELS ACCORDING TO THE FOUR
k = n (which is of course the best choice fbrbut also the CRITERIA AND THE MSEP - CASE STUDY A

most costly) and the CV, AIC and BIC criteria. The MSEP

(mean squared error of prediction) on the remain¥g- n Ne,\tl",fl‘irks = gl?ﬁ 39C\1/64 43’;'5818 46?3%83 ":"55152'32
data points is also considered but as a reference criteria. NN2 79224 | 23715 | 446.8827 | 493.0592|| 37.946
For a given neural model/: NN3 -5.0229 | 5.9486 | 452.7242| 518.6906 || 10.707

tarion i - N, NN4 || -2.2254 | 1.2371| 459.5458| 545.3020| 6.3251
The CV 9”'“;”0” s defined as CV= i llyi NN5 06812 | 1.0973 | 464.6480| 570.1941| 2.0014
f(@i,0n-1[i])[|5,-+ wWhereb,,_,[i] is the maximum likelihood NN6 || -0.4401 | 1.1437 | 475.6331| 600.9692| 2.8412
estimate ofd on Z,_4[i{] and @ is the empirical variance- NgNg -g-gégg léggZ 231-2513 g?;ggg g.gggg

- - N6N -2, 1.3934 | 601.6449| 924. .

covariance matrix of thgy; }i1,....n- N7N10 || -2.6198 | 1.3334 | 664.0071| 1092.8 | 7.7527

For the AIC and BIC criteria usual forms are considered [10]:
AIC = —2logL(6,,, A,,) + 2K and BIC= —2logL(0,, A,) +



TABLE Il
WILCOXON RANK CORRELATIONS OF THE CRITERIA SCORINGS
CASE STUDY A

to CV). The pairwise Wilcoxon rank correlation coefficients

displayed by Table IV express strikingly these respective
performances and confirm the quite satisfying behaviour of
the U-criterion with respect to the MSEP.

U CV AIC-BIC  MSEP
U 1 09167 -0.4834 1 TABLE Il
Ccv 1 -0.5334  0.9167

SCORINGS OF THE SEVEN NEURAL MODELS ACCORDING TO THE FOUR

AIC-BIC 1 -0.4834
CRITERIA AND THE MSEP - CASE STUDYB
. Networks U cV AIC BIC MSEP
B. The spectroscopic Tecator data I 37639 | 1.0333 | 135.1183| 166.8199] 6.7284

. . . . f2 -2.4911 | 1.1056 | 172.6568| 232.5376|| 5.6680
The previous Bayesian approach (U-criterion) was applied s 17563 | 06947 | 1961045| 284 1645| 2 4688

to the selection of a 2-output feedforward neural network for fa -1.5830 | 0.6162 | 229.3208| 345.5600 || 2.1241

the Tecator meat data [8], [36]. The data recorded by a Teca- §5 i;%g 8-2(1)22 ggg-g%g Z‘gg-ﬁ%‘ é-gggi
6 =4, . . . .
tor spectrometer (the Infratec Food and Feed Analyser) are s 17510 | 05678 | 322.3335| 523.1103! 2.8895

available in the Statlib, by courtesy of the Tecator Compan
and H. H. Thodberg (http://lib.stat.cmu.edu/datasets/tecator).
In [37], the single-output version of the proposed approach
was applied to the selection of a multilayer perceptron for the
prediction of the fat content of a meat sample on the basis
of its near infrared absorbance spectrum as available in the
Tecator data set. The results were compared to that of the

TABLE IV
WILCOXON RANK CORRELATIONS OF THE CRITERIA SCORINGS
CASE STUDYB

MacKay's Bayesian evidence method [22] used by Thodberg U Cv  AC-BIC MSEP

[36]. The goal is now to select a network which best predicts éJV 1 0'51714 '0;113714 g:ggé‘;

both the fat and protein meat contents. AIC-BIC 1 -0.5357
1) The data: Following Thodberg recommendations the

first n = 172 samples of the Tecator data set are used

for computing the four selection criteria for each competing

model. The 43 next ones are used to compute the MSEP of VII. CONCLUSION

each model. The input variables are 13 preprocessed principdarhis paper shows how the richness of information and the
components of the spectra. The 2 output variables are thersibustness attached to predictive probability distributions can
and protein meat contents. benefit to the right selection of a multi-output feedforward
2) The competing networks/ feedforward neural modelsneural net topology. The proposed Bayesian method relies
with 13 inputs and 2 outputs are considered. These modaf®on a convergent approximation, built from a conjugate
were derived from the single-output netwofkwith 3 neurons parameter prior density, of the neural net predictive probability
on a single hidden layer, previously selected by the U-criteriahistribution. This predictive distribution is used to define an
for the fat prediction problem [37]. These 7 competing neurakpected utility criterion which can be consistently estimated
models,f1, f2, f3, f4. f5: f6, f7, are made of a single hiddenon a sample-reuse basis. For a given data set this criterion
layer with 1, 2, 3, 4, 5, 6 and 7 fully connected neurondetects the neural model in a given set, which on the whole
respectively. Table Il shows the score reached by each rabst favors the likelihood of each observations with respect to
the 7 models for each of the 4 criteria U, CV, AIC, BIC, orthe others. As compared to the evidence approach, which could
the 172 first samples of the data set and the MSEP of the readily extended to multioutput networks, our posterior
related networks on the 43 next samples. One can note tbahsity approximations are normal and Wishart rather than
the U-ranking of the networks is much closer to the MSERormal, leading to multivariate Student approximations for
ranking, than are the other three criteria rankings. The twoe predictive densities. The behaviour of the criterion is
best networks according to the U-criteriofy,, f5, are also compared, on simulated and actual neural model selection
the two best ones according to the MSEP. Idem for the twwoblems, with the behaviours of classic model selection
worst onesfi, fo. With regard to the small size of the trainingcriteria as point-prediction-based cross validation criterion and
data set with respect to the average parameter numberirdbrmation-based AIC and BIC criteria. Both comparisons
the competing networks, the performance of the U-criteriamveal the satisfactory trade-off reached by this Bayesian cri-
is rather satisfying. That of the CV-criterion is not so gooderion between fitness induced by structural neural complexity
because of the conservative trend of CV which tends to favand generalization capability offered by simpler structures.
unduly complex structures (CV has ranked the seven netwolsreover the greater small-data-set robustness of the criterion
according to their decreasing complexity). The respective AMith respect to that of the classic point-wise cross-validation
and BIC-rankings are even much more unsatisfying, sinceterion is also evidenced. Finally, because of its analytic ba-
unsurprisingly, these two criteria have penalised too muels, the computing cost of such a utility criterion is comparable
the network complexity and have simply ranked the sevea that of the standard cross-validation criterion and generally
networks according to their growing complexity (in contradbwer than that of the criteria based on MCMC Bayesian



learning and without the problem of efficient stopping rules APPENDIXII

met by these last criteria. PROOFS
A. Proof of Lemma 1
APPENDIX | Let us first show that the expectation of the probability
BAYESIAN PRELIMINARIES distribution of densityp(,A|Z,) converges to(f.,A.) as
- . defined in IV-C.
Proposition 1 (Bernardo and Smith [6])tet . By definition of the normal and the Wishart probability distri-
Z = (z1,...,2) be a random sample froma-dimensional butions and by the almost sure convergence of the maximum

regular exponential family distribution. Its likelihood is givenikelihood estimators{én, [\n) to (0., A.), it comes
by

E5(6,A17,) = (én,M[\n) = (0.,0) as

L w ¢ 2n
p(Z]¢) = (H ) eXP{ZCWi((b)Zhi(Zj)} Let us show now that the variance of the probability
j=1 i=1 J=1 distribution of densityp(d, A|Z,,) tends to zero as grows to
. . . (33) infinity.
then the conjugate prior density of the parameter vegtbas
the form e Let 3, be the inverse of the variance-covariance matrix
of ¢
— -1 70 by ) L IO -1
p(8IT) = K[T] " g(6)™ exp { ;wmm}, ped Vit = (2307 g hnfog) =6
(34) =1
where T = (79,71,...,7Tw), vector of hyperparameters, is Let us show thaf3, grows to infinity withn:
such that
ﬁn = Z ;.0 "Aani7é7L
K|[T|= o W5 i edd < 35 2 N
7= [t exn D)o <o @) Y A
- . = 2nf,
Proposition 2 (Bernardo and Smith [6])Under the as-
sumptions of Proposition 1 Let n
(7) the posterior density fop is By = 1 Z Foo Auforo
n - iU LU
p(Z,T) = p(d|T + te(2)) (36) According to the strong law of large numbers, as thare
i.i.d., one has

where o ., . ~
lim ﬁn = E:zc [fg:ﬂ*A*fm,O*] = ﬁ a.s.
Z n—oo

T+t(Z) = (ro+ 4,71+ Zhl(zj), ey Tw Zhw(zj)) As the {z;} belong to a compact set anfdis C*, we can

j=1 j=1 deduce that
(ii) the predictive density for future observatios = lim lZf' R Anfm ; =0 a.s.
(Z1,.-+,Zm) IS n—oo n &= " Ti; i
Let us show thaf3 is positive definite: For alk, € IR,
Z Z for all n
212, T) = p(Z|T +t = Th . .
rlZ| ) ,SL | /(T)) ; (7 u'Bu > 0 and then «'fu > 0 . If u is such that
= H z; +t0(2) + tm(Z)) (37) u'Bu =0, we have for ali € N
=1 ) K(T +t4(2)) _ . .
lim ([, o ully, = fei 0. ula. =0 as.
where .
u # 0, would imply thatf does not depend on all the param-
m etersf, which contradicts the definition of. « must then be
o Z ha(z Z hoy equal to zero angd is positive definite. Theriy, * "=™ n 3

and V, — 0.
The adaptation of these results to the context of multiresponséet us study the variance df :
nonlinear regression introduced in Section 2 is straightforwaidet )\;; be theij®" term of the matrixA which follows the
In this context,l = 1,21 = y1.,, and din(z1) = nd. Wishart distribution included in (20).



According to [32] about the Wishart distribution: A;; ~

27\“ 2

#he) s /waM%wm@Ammwm
then a2

oy L BE) ey = [ls-ol + [ 1-p
( zz) - n2 I . ( ) C Ce
Let I;; be the d-dimensional vector with the! and j" = /Clp_p| * /Ccp + /Cp (39)
components equal tb and the others equal @ According
0 32] A+ Ay + 25 ~ i (280 )1 By By Lemma 1 p(0,A|Z,)d0dA "= 0 as,
and Ve + X+ 20) = Moreover, by congistency of posterior densities [1]
8(lij (An>l§,j)2(2n+d+ N . p(0,A|Z,)dAdA "= 0 a.s. To prove the theorem it
3 —_— . Ce
Then V()\ij)n”iio 0. remains to show thaf (0, A|Z,) —p(0, A|Z,,)|dOdA ==
c

Let A be a measurable subset & x S including an 0 a.s.

open neighbourhood off., A.). There existse such that Let Cs = Proj,(C) x S, where Praj(C) denotes the
Bc(0.,A,) C A, whereB. (6., A,) is the closed parallelotope projection ofC upon©, and let us note thatC c Cs.

of side ¢ centered af6,,A.). As (6,,A,) convergea.s. to We are going to show the stronger result

(04, A,), there existsN. € IN, such that for alln > N,

Beja(0, An) € Be(B.,AL) aus

Then lim |p(0,A|Z,) — p(0,A|Z,)|dOdAA =0 a.s.

n—oo CS

P(Bej2(0n, An)) < P(Bc(6.,A4)) < P(A)  as. From (19)

Letn;,i=1,...,q,g+1,...,¢+d(d+1)/2 denote they 0,A|Z,) = K, |A|" ex — flxi,0 40
components of) and thed(d + 1)/2 components of\. Let P(f, A|Zn) 4] p{ ZHZJ 7 HA} (40)

7 = Ez, (n:). Let K = ¢+ d(d + 1)/2 be the total number

of network model parameters . and from (20)

. - n 1 A
PO.NZ) = RalA"exp{ = 10— 0nl,
p(BE Q(énaAn)) = ]-_ P(Be Q(énvj\n))
/ _ 5 / i € - Z ||yz — f(z;,0 || } (41)
= 1-P({n: max [g—70'>3}) oA
i=1,...,K 2
According to the Markov inequality, for all=1,..., K, one wherek,, is a normalizing constant.
has A 4V () Let us denote Ec[.] = / [1p(0, A| Z,,)dOdA.
— < d c . .
P(jm =071 > €/2) < — Let us show that the Kullback-Leibler distance between the
As we shown previously, for alli = 1,....K, distributionsp and p over Cs tends almost surely to O as
lim V(n:) = 0. Hence, for alle > 0 there eX|stsZV cN 9rows to infinity. This will result in their convergence i -
such that4v<’”) < eforn > N;. Let N = max{N;,i = "o
LK} For all i = 1,...,K and alln > N, one has
Pl =] > ¢/2) < e reeln ) 5(0.A1,)
= 5(0,A|Z,) log ———""2dOdA
and then /Csp( AlZn) log p(0,A|Z,,)
5 ~n IA(n 1 A
P( max, | =] > ¢/2) < e = log 2 + Epcs {— S0 =03,
Finally, for all e > 0, there existsV € IN such that for all -
n>N Y _Z”yi_f(xm HA—’_Z”yz :EZ, | :|(42)

P(A)>1-¢ as.
let us consider the successive termskaf, (p, p):

B. Proof of Theorem 1 o Let &8 =Epcs[—3]0 — 0,13, ], which is finite.

v 1 Since || — énH%" ~ X2 underp, it comes immediatly
Let B = (2 X0y 7,5 Ak, i) }
Let C' be a compact subset @ x S including an open 0> &, > Ep[—iHe—énH%"] = —g
neighbourhood off,, A.).

Let C° be the subset 0® x & complementary ta’. « Foralli=1,...,n, in a neighbourhood of,, it holds



lys — f(xi,0)[13 ) . ; A
= llyi = f(@i:00) + [, 5, (0 = 02) 1 + (1|6 — 6n|)
= llyi = F@i, 0)I3 + 11F,, 5, (0 = 0u)I1%
+2 <yi — f(@i,0n), f,, 5 (0 — 0n) >a
+o([|6 — 0,]1%) (43)

and

_leyi_f(‘TZ’ ||A+Z||yz_ (4,0 ||A
=1
= Z 1f,,0, 60 = 0a)II3

+ZZ < Yi — SC“ n) f.’ci,én(e - én) >A

+n 0(||9 —6nla) (44)

According to the definition of the Wishart probability

2n+d+1
2n

distribution, B[A] = A,. Then

Es.cs [Z £, 5, (6 —6n)lI3]

Es.cs[E Zufm 0,)[1310]]

2n—|—d+1 . A
= Bycs [T Z ||fwi,én (0 — 9n)||?\n|

i=1
2n+d+1
= I 50— 3]
2n+d+1_,
- e (45)

In the same way

PCs Z <Y — x“ n)af:m 0 (G*én) >A]

= Eﬁcs|:
Z<yz

2n+d+1
- 2n Bs.cs [

S <= 100 o, 0= 00) >,

(21,00, f,,.5, (0 — 0n) >4 16]]

2n+d+1
- el

=0 (46)

since (0,,, A,,) are the least square estimators(6fA).
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The Kullback-Leibler distance betweenandp over Cs
then becomes:

Kcs(,p) = log% + &G, — PEELEL, (47)

+Ep,cs [ o([16 — 0 1*)]

Let us show now thalim,, ... E; cs [ o(||0 — 6,,]|%)] =
0:

It was shown in Section B.1 that, ~ 2nf3 asn grows
to infinity, with 3 a positive definite matrix.

By the equivalence of norms dR? there exista; and
ag positive, such that

ar]}0 = 0% < 116 — 0,1 < ll6 — G2

an|f — én”% <nlo - én”2 < nagl|f — én”%

and then fom large,

R 1 .
5, <nllf —0,]* < Fazllf — 0ul3,
As [0 — 0,]% ~ x2 underp, it comes

1 N 1
5N S Ep[nllf — 0,7 < 5024

There exist theriy; and a, positive such that

a1 < Eposnl|f — 0,7 < as

Let us come back to the study of thé|6 — 6,,|2), in
(43):

For all couple(z;, y;) let us noteg? (6) = o(||0 — 6,,|2).
Then

Zgn =

gn (0 - 1
—n i=1

Thenlimeﬁéu an(6) = 0.

As lim, .0, = 0, a.s., for alli € IN* we have
lim,, o 3% (6,) = 0. Moreover as the{z;} belong to
the compact subset and the model functiory is C*
with respect tar and 6, the last convergence is uniform
with respect tar:

o([16 — 6 ]1*)

Ve>0, IN.: Ve eX,Vn> N, |§5(0.)] <e

and

Ve>0,IN: V>N, |gn(0s) <e
then
lim g,(0,) =0

Now let us introducey,, in the expectation of interest :



Es.csln o([l0 — .41*)] = Ep.cs [34(0)n16 — 6,

For all e > 0, let V. be the ball of radius centred
at 0., A.. Let us choose: sufficiently small such that
V. Cc Cs. Then

Es ol 0|6 — 0,]2)] =
/ Gu(O)ll6 — 6,25(6, A Z,)ABAA
CS\VE

+ [ an@mlo - 6,25(6.412,)0000  (48)

Vs
As p is consistent, for alk > 0 such thatV, c Cs there
exists N, such that for alln > N,

/ n)|0 — 0,)°H(0,A|Z,)d0dA < e
CS\VE

Then for alln > N,

[Encslm o6 = 6.12)]] < sup G (B)c + 513 (6)c
S e

As supc, gn(f) is bounded, the first term tends to
zero with e. But as ¢ tends to zero,V. tends to
{0.}. As n grows to infinity, thensupy, g,(¢) tends to
lim,, o0 Gn (A+) = 0.

We conclude that

lim Eyecfnofllf —6u2] =0 (49)

. Kn
Finally let us show thatlim log — =0

n—oo

To alleviate notations let us denote, from (40) and (41):

p=K,xh, and p = K,Xh,.

Let us follow areductio ad absurdunby assuming that
limy, oo K /K, # 1.
Because of (44), (45) and (46), fon — co

Escs [log %} — 0 and E ¢4 [log %} — 0 as.
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that fo}rln > N, Jensen inequality can be applied to

Ep,cs[ﬁiL and gives

! i i
. < Ex

exp E5 o [log ﬁn} <Escs [izn}

but By (50)

n n—oo
} =
n

h
exp Ep oy [log 7

n

h . .
then lim E; o, LT] > 1, which contradicts (51).

n

. K,
i) Suppose now that lim — > 1:

By a similar reasoning "and since(d, A|Z,,) is
consistent

h7l .
lim Ejc. Lﬂ > lim | Kyh,dodA = 1

n—oo n n—oo CS
which implies

lim log Ej cq [h—”} < 0. (52)

n— o0 hn
Due to the convexity of the -log function and the pos-
sibility to apply the Jensen inequality tg, k&, [%] .
for sufficiently greatn, we have by (50) "

B hnT n—oo
—logEp.cs {h—n] < Eﬁ,cs{log Z} — 0
which contradicts (52).
From i) and i) we can deduce that
lim,, , log(K,/K,) = 0, and then, from (47)

and (49) that

Keos(p,p) == 0 (53)

This completes the proof of Theorem 1, since Kullback
convergence dominatds convergence ovef's and then
overC.

n (50) C. Proof of Theorem 2

i) Suppose first that lim ' <1:
then "

lim Ej e, [@} = lim K, [ h.dodA
n— 00 hn n— 00 Cs
< lim K, h,d6dA
n— 00 Cs

< lim [ K,h,d0dA

n— oo

= 1 (51)

Due to the convexity of the exponential function and

the consistency ofi(6, A|Z,,) there existsN such

D:/

Pyl Zn) = plyla. Z0) | dy

/ / (10, A, 2)p(6, A| Z,)d8dA

—/p(y\a,A,x)p(e,MZn)dedA ‘ dy

:/ /p(y\a,A,x) [ﬁ(é),A|Zn) —p(0,A|Zn)}d9dA
+/ﬁ(0,A\Zn) [B(y16, A, 2) — p(ylo, A, 2)] d6ar ] dy

d6dAdy

< [ P16, A,2) | 50, A|Za) — p(0, A|Z,)

—&-/ﬁ(&,A\Zn)

|0, A, ) — p(y|6, A, z) ‘ d9dAdy




By Fubini's theorem [11]

p(0, A Zy) — p(0,A|Z,,) [12]

+ [50.02,) [ | 506.4.0) - p(ul6. A.2) | dydoar
=T +1Tz

As p(0,A|Z,) is assumed to be &;-convergent approxima- [15]
tion of p(6, A|Z,,), Ty tends to zero as grows to infinity. Let
us show that the same is true fb5s.

Leth(0,d,) — / 516, A, 2)—p(y|6, A, ) | dy. Obviously

0 < h(-,-) < 2. The mapping: is continuous and(6,,,6,,) =
0 for all n € IN*. As lim, o0 (0, Ay) = (65, AL) a.s., we
deduce thatim,, .o h(f,,6,) = 0. Moreover, for alle > 0
there exists a neighbourhood (., A.), V., and an integer
N; such that for almost al{¢,A) € V. and alln > N; we
haveh(0,0,) < /2.

D< / dOdA

(14]

(16]

(18]

Let us now splitT; according toV; : [20]
T, = / 50, A| Z,)h(0,0,,)dOdA 21]
[22]
n
€ Vac [23]
T, < (0, M| Z,)h(0,0,)d0dA + &/2
Ve [24]
T, < 2 p(0,A]|Z,)d0dA + /2
ve [25]

Due to the consistency qf(d, A|Z,,) asn grows to infinity,
there exists an intege¥, such that for alln > N, we have

p(0,A|Z,)d0dA < €/4 and thenTy < e.

Vc
It follows that D tends to zero as grows to infinity. 271
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