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Abstract— A Bayesian method for the comparison and selection
of multi-output feedforward neural network topology, based
on the predictive capability, is proposed 1. As a measure of
the prediction fitness potential, an expected utility criterion is
considered which is consistently estimated by a sample-reuse
computation. As opposed to classic point-prediction-based cross-
validation methods, this expected utility is defined from the
logarithmic score of the neural model predictive probability
density. It is shown how the advocated choice of a conjugate
probability distribution as prior for the parameters of a compet-
ing network, allows a consistent approximation of the network
posterior predictive density. A comparison of the performances
of the proposed method with the performances of usual selection
procedures based on classic cross-validation and information-
theoretic criteria, is performed first on a simulated case study,
and then on a well-known food analysis dataset.

Index Terms— Feedforward neural network, Bayesian model
selection, conjugate prior distribution, empirical Bayes methods,
expected utility criterion.

I. I NTRODUCTION

The issue of selecting a right network topology is one of
the most debated in feedforward multilayer neural network
modeling. A bias/variance trade-off has to be satisfied [16],[7],
to get close to some optimal model complexity (number of
layers and neurons) protecting as most as possible from both
contradictory effects of overfitting and underfitting. However,
the dynamics of the bias and variance errors can in general
be only estimated through estimation of a huge amount of
varied neural network models and comparison on a test data
set, which is hardly feasible in practice. Less time-consuming
on-line and off-line strategies have then be proposed, which
belong to several classes, heuristically or more statistically
oriented. Constructive algorithms [19] come within the first
category, while more complex constructive-destructive meth-
ods often come within the second [30]. More general methods
are the so-called regularization techniques [29], based on
implicit structure optimization [28]. They consider a fixed
topology and they constrain the network parameters in some
way, for example by adding penalty (or weight decay) terms
to the cost function, in order to avoid saturation of the units.

Regularization techniques using penalty term addition, can
be considered as statistically Bayesian since this penalty can
be associated with a prior probability on the weight and
bias parameters [9]. The well-known MacKay’s Bayesian
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framework for backpropagation [22], originally designed for
single output networks, comes within these approaches. For a
given neural model this Bayesian formalism leads to the so-
calledevidence, which estimates how likely the model is given
the available dataset, and thus can be used in model selection.
In the past recent years the MacKay’s paradigm has been used
in several applied fields, such as mathematical finance [25],
[17], [40], for example.

However these approaches present several critical points
such as the imprecise relationship between the generalization
performance of the network and the advocated Bayesian selec-
tion criteria [22], [36], the treatment of the hyperparameters
[9], [39], [23], the usually assumed independence of the weight
Gaussian priors, and more crucially, scarcely controllable
approximations of the posteriors. The evidence method for
example relies on a critical Gaussian approximation of the pos-
terior parameter distribution (in which the hyperparameters,
the weight decay terms, are fixed to the values maximizing
the evidence). It has been observed that this approximation
breaks down when the ratio of the dataset size to the number
of network parameters is too small [22], [36]. Markov chain
Monte Carlo methods have been proposed to replace this
Gaussian approximation [27], requiring now skilled simulation
expertise and greater computing.

More general and statistically oriented methods are the
information-theoretic model comparison criteria [10] as
Akaike’s AIC, BIC, Mallow’s Cp, RIC and NIC [26], which
also combine some measure of fit with a penalty term to
account for model complexity. However it has been observed
that according to the situation considered, the performance of
these criteria is rather sensitive to the type of penalty [35]
especially in the case of neural networks [2].

Other statistical tools such as asymptotic inferentials tests,
e.g. likelihood ratio, Wald’s or Rao’s Lagrange multiplier tests
[33], can also be used to compare feedforward neural models
but they are explicitly restricted to the comparison of nested
neural models.

Finally, one of the still most attractive comparison pro-
cedure, even if computer-intensive, is cross-validation (CV),
because of its genericity and limited probability assumption re-
quirements (e.g. exchangeability assumption). However, it has
been shown that CV can be inconsistent (unless appropriate
data division is done, [34]), as are the methods asymptotically
equivalent to it (e.g. AIC andCp). Moreover, CV is often too
conservative and tends to select unnecessary large models.

To counteract these defects, a CV-like Bayesian nonlinear
model comparison procedure, inspired by a classic utility
criterion [6], has been developed and adjusted to the issue of
the comparison of single-output feedforwad neural networks
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[37]. An extension of this Bayesian approach to multiresponse
regression models has been designed recently [31].

The present paper proposes an adaptation of this approach to
the comparison of multioutput multilayer neural networks but
with a specific recourse to the Bayesian conjugate prior theory
and to the so-called empirical Bayes approach. This particular
Bayesian framework offers the advantage of allowing to intro-
duce data-respectful priors with the possibility of a complete
analytical treatment of the posterior and predictive densities.
Moreover, the method allows comparison of networks differing
by their respective topologies as well as by their input variable
sets. For a given data set, this predictive network performance
comparison approach can be used to select among neural nets
of varied complexity the net achieving the best compromise
between complexity and generalization. As a matter of fact, it
could seem that after several valuable works such as [27], [18]
for example, the predictive accuracy of a Bayesian network is
not sensitive to the number of hidden units (of course given
enough units not to underfit) and that there is no need to try
optimizing their number and organization, provided sensible
priors and adequate posterior approximations are used for the
network parameters. However from a practical point of view
and from that of the general non Bayesian neural net user,
there is still a need of simple efficient standard neural net
comparison and selection tools, sufficiently generic to relieve
as much as possible of any specialized and controversial
issues as hierarchisation of net parameters, relevant choices
of parameter and hyperparameter priors, efficient design of
posterior approximations and relieving also of the specialized
simulating estimation apparatus they involved (e.g. MCMC
techniques).

In this spirit, this paper puts the emphasis on a general
analytical approach, leading to a well known closed form
for a consistent approximation of the neural net predictive
density and confining all numerical aspects only to the final
evaluation of the proposed utility criterion.

The paper is organized as follows. In Section II the statis-
tical framework of the neural model selection problem is set
up. In Section III the building elements of the expected-utility-
based criterion are considered. Convergent approximations
of the parameter posterior and posterior predictive densi-
ties, allowing the sample-reuse calculation of the expected
utility, are developed in Section IV. Section V shows how
this predictive density estimation procedure can easily be
adapted to take full account of the structural multi-modality
of the likelihood function of a feedforward neural model. In
Section VI this Bayesian procedure is applied to a simulated
predictive neural network selection problem and then to a well
known bench-mark test in spectroscopy. The performances
of the procedure are compared with that of AIC, BIC and
classic CV procedures. Appendix I briefly recalls elements of
Bayesian theory used in the construction of the expected utility
criterion. Appendix II provides the proofs of the convergence
of the approximations of the required parameter posterior and
posterior predictive densities used in the criterion.

II. M ULTI -OUTPUT FEEDFORWARD NEURAL MODELING

FRAMEWORK

A multi-ouput feedforward neural network modelM is a
multi-response nonlinear regression model which under the
assumption of Gaussian additive errors, can be written as

Model M : yi = f(xi, θ) + εi (1)

where the nonlinear mappingf results from the network
topology with x as input vector andθ as parameter vector
(the set of all weights and biases of the network), [29].
For i ∈ {1, . . . , n} : yi ∈ IRd, xi ∈ IRl, θ ∈ Θ a compact
subset ofIRq, εi ∼ Nd(0,Σ) with Σ ∈ S ⊂ IRd×d whereS is
the set of all positive definite symmetric matrices of dimension
d×d. We shall have to consider more often than the variance-
covariance matrixΣ, the precision matrixΛ = Σ−1.
Let us denote

• Zn = (xi, yi), i = 1, . . . , n, the available data set, made
of n i.i.d random data points(x, y).

• y1:n = (y1, . . . , yn) andx1:n = (x1, . . . , xn).
• ḟxi,θ =

(
∂f(xi,θ)

∂θj

)
j ∈ {1, . . . , q}. We shall suppose

that these derivatives exist for all the neural networks
considered.

Other notations :
• Nq(·|µ,Σ) : theq-dimensional Gaussian probability den-

sity with expectationµ and covariance matrixΣ.
• Wid(·|α, β) : the d-dimensional Wishart density with

parametersα andβ.
• Std(·|µ,Ψ, α) : the d-dimensional Student density with

parametersµ, Ψ andα.
• To alleviate notations, integration with respect toθ andΛ

over their whole membership setΘ×S, will be denoted
throughout the paper by

∫
instead of

∫
Θ×S .

Given Zn and a setM of J feedforward neural models
{M j , j = 1, . . . , J}, with E(y|M j , x) = f j(x, θj), the issue
of interest is to select the best neural model,M∗, in some
predictive sense.

III. T HE EXPECTED-UTILITY -BASED CRITERION

To do this selection we follow themaximum−expected−
utility approach [6] for which the optimal model choice isM∗

such that

ū(M∗|Zn) = sup
Mj∈M

ū(M j |Zn) (2)

where

ū(M j |Zn) =
∫
u(M j , y, x|Zn)p ((x, y)|Zn) dydx (3)

in which u(M j , y, x|Zn) is a given utility function and
p ((x, y)|Zn) is a probability density representing actual be-
liefs about(x, y) having observedZn.
But p ((x, y)|Zn) in (3) is generally not available. We
then search for a consistent estimate ofū(M j |Zn) for each
M j ∈M. Following Bernardo and Smith [6] we consider the
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n partitions ofZn: Zn = [Zn−1(i), (xi, yi)] for 1 ≤ i ≤ n,
whereZn−1(i) denotes the data setZn after withdrawal of
the data point(xi, yi). If we selectk of these data points
at random (without replacement), we have by the strong law
of large numbers under regular assumptions, asn, k grow to
infinity [6], [31]

∣∣∣ 1k ∑k
i=1 u(M

j , yi, xi|Zn−1(i))

−
∫
u(M j , y, x|Zn)p ((x, y)|Zn) dydx

∣∣∣ a.s.−→ 0

The expected utility of modelM j ∈ M can then be consis-
tently approximated by

Uj =
1
k

k∑
i=1

u(M j , yi, xi|Zn−1(i)) (4)

Furthermore as we are interested in comparing models from
a predictive distribution point of view, as suggested in [6] we
take as utility function the logarithmic score

u(M j , y, x|Zn) = log p(y|M j , x, Zn) (5)

In (5) p(y|M j , x, Zn) is the posterior predictive density under
modelM j of a responsey atx, given the past observationsZn

and an appropriate prior density for the neural network model
M j parameters. Let us note that with this choice for the utility
function, (4) is similar to the predictive sample reuse criterion
of [14] which considers the product of conditional predictive
densities.
We then decide to take asM∗ the modelM j ∈Mmaximizing

Uj =
1
k

k∑
i=1

log p
(
yi|M j , xi, Zn−1(i)

)
(6)

This procedure selects on a sample-reuse basis, the model
under which the data setZn achieves the highest level of some
internal consistency: the best model is that which on the whole,
most favors the likelihood of each observation with respect to
the others.

The next section will be devoted to the calculation of a con-
vergent approximation̂p of the parameter posterior predictive
densityp, for each neural network modelM j , leading to the
practical criterion

Ûj =
1
k

k∑
i=1

log p̂
(
yi|M j , xi, Zn−1(i)

)
(7)

such that, givenk

Ûj
n→∞−→ Uj a.s. (8)

IV. POSTERIOR PREDICTIVE DENSITIES: A CONSISTENT

APPROXIMATION

In order to compute (6) we need a posterior predictive
density for the response at a givenx, under modelM j ,
conditional to the training setZn, for eachM j ∈M.
For a given networkM as in (1), such a posterior is defined
by

p(y|x, T , Zn) =
∫
p(y|x, θ,Λ)p(θ,Λ|T , Zn)dθdΛ (9)

In (9) p(y|x, θ,Λ) is given by model (1) andp(θ,Λ|T , Zn)
is a (θ,Λ) posterior probability density withT a vector of
hyperparameters. This(θ,Λ) posterior density is obtained by
Bayes’ theorem from a given(θ,Λ) prior densityp(θ,Λ|T ):

p(θ,Λ|T , Zn) =
p(Zn|θ,Λ)p(θ,Λ|T )∫

p(Zn|θ,Λ)p(θ,Λ|T )dθdΛ
(10)

For a given(θ,Λ) prior, the computation of the posterior (10)
is generally untractable. One possible approach to consistenly
estimate (9) is to use a technique of Bayesian learning for
neural network. These techniques are based on(θ,Λ) sampling
from an MCMC p(θ,Λ|T , Zn) posterior density estimation
(see for example [18], [12], [20]). However, such MCMC
integrations frequently suffer from instability [15] which can
impair the relevance of the final utility criterion estimation.
In addition, another major and preliminary difficulty of this
Bayesian training approach is of course the(θ,Λ) prior choice
itself, which in spite of several attractive approaches [21],
[27], remains a critical issue lacking from a general response
easy to handle especially for non Bayesians. These difficulties
led us to consider an analytical treatment of the parameter
posterior and predictive posterior densities estimations, from
a well known class of parameter priors.

A. (θ,Λ) prior density

Let us note that under the assumptions of model (1) the
probability density of(y1:n|x1:n, θ,Λ) belongs to the expo-
nential family:

p(y1:n|x1:n, θ,Λ)

=
|Λ|n/2

(2π)nd/2
exp

{
− 1

2

n∑
i=1

‖yi − f(xi, θ)‖2Λ
}

= c× g(θ,Λ)× exp
{
− 1

2
tr
[( n∑

i=1

yi y
′
i

)
Λ
]

+
n∑

i=1

f(xi, θ)′Λyi

}
(11)

with c = 1
(2π)−nd/2 and g(θ,Λ) = |Λ|n/2 exp

{
−

1
2

∑n
i=1 ‖f(xi, θ)‖2Λ

}
.

This suggests to take as(θ,Λ) prior density theconjugate
density with respect to the likelihoodp(y1:n|x1:n, θ,Λ), thus
ensuring tractability of the related posterior. Actually, the
fundamental advantage of a conjugate prior density is to
provide very easily the related posterior density since, because
of a closure property, both densities belong to the same family
of probability distribution [3].
From (11) and by definition of conjugate families for regu-
lar exponential families of probability distributions, we have
easily
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p(θ,Λ|T )

= K[T ]−1[g(θ,Λ)]τ0 exp
{
− 1

2
tr
[
T1 Λ

]
+

n∑
i=1

f(xi, θ)′ΛT i
2

}
= K[T ]−1|Λ|τ0n/2 exp

{
− τ0

2

n∑
i=1

‖f(xi, θ)‖2Λ

+
n∑

i=1

f(xi, θ)′ΛT i
2 −

1
2
tr
[
T1 Λ

]}
(12)

with T1 a d × d symmetric matrix,T i
2 a IRd vector for

i = 1, . . . , n, K[T ]−1 a normalizing constant andT =
(τ0, T1, T 1

2 , . . . , T n
2 ), a set of hyperparameters.

Interpretation ofp(θ,Λ|T ) : see final remark of§ IV.C.

B. (θ,Λ) posterior density

Under modelM the parameter posterior density associated
to the priorp(θ,Λ|T ) is then given by (see Appendix I):

p(θ,Λ|Zn, T ) = p(θ,Λ|T + t(y1:n)) (13)

with T +t(y1:n) = (τ0+1, T1+
∑n

i=1 yiy
′
i, T 1

2 +y1, . . . , T n
2 +

yn)
From (12) and (13) we have

p(θ,Λ|Zn, T )
= K[T + t(y1:n]−1|Λ|(τ0+1)n/2

× exp
{
− τ0 + 1

2

n∑
i=1

‖f(xi, θ)‖2Λ

+
n∑

i=1

f(xi, θ)′Λ(T i
2 + yi)

−1
2
tr
[
(T1 +

n∑
i=1

yiy
′
i) Λ

]}
(14)

At this point, we have to decide how to treat the hyperpa-
rametersT : we could try to integrate them out but under the
problematic choice of a second level prior and other possible
drawbacks [23]. In the present case, a more tractable and
natural approach is to optimize them by maximizing the prior
density of the observations themselves:

p(y1:n|x1:n, T ) =
∫
p(y1:n|x1:n, θ,Λ)p(θ,Λ|T )dθdΛ (15)

It can be shown that

p(y1:n|x1:n, T ) = Πn
i=1p(yi|xi, T )

n→∞� Πn
i=1Nd

(
yi|f(xi, θ0),

a

2
β(T )−1

)
(16)

where theith factor in the right-hand side is the value atyi

of the d-dimensional normal density with meanf(xi, θ0) and
inverse covariance matrix

a

2
β(T )−1, with

• a = nτ0 + 2
• β(T ) = 1

2

∑n
i=1

(
τ0f(xi, θ0)f(xi, θ0)′ − f(xi, θ0)T i

2
′ −

T i
2 f(xi, θ0)′

)
+ 1

2T1

• θ0 = argminθ det
[∑n

i=1

(
T i

2 /τ0 − f(xi, θ)
)(
T i

2 /τ0 −

f(xi, θ)
)′]

p(y1:n|x1:n, T ) is then asymptotically maximized by

τ0 = 1, T1 =
n∑

i=1

yiy
′
i, T i

2 = yi, i = 1, . . . , n (17)

a setting under whichθ0 andβ(T ) are equal tôθn and
n

2
Λ̂−1

n ,

whereθ̂n and Λ̂n are the maximum likelihood estimates ofθ
andΛ and given by [33]:

θ̂n = argmin
θ

det
[ n∑

i=1

(
yi − f(xi, θ)

)(
yi − f(xi, θ)

)′]
Λ̂−1

n = Σ̂n

=
1
n

n∑
i=1

(
yi − f(xi, θ̂n)

)(
yi − f(xi, θ̂n)

)′
(18)

An intuitive idea of this optimal setting can be reached from
(15) by seeing thatp(y1:n|x1:n, T ) ≤ p(y1:n|x1:n, θ̂n, Λ̂n).
The maximization ofp(y1:n|x1:n, T ) will be favored, asn
grows to infinity, by choosing a setting forT such that the
prior density p(θ,Λ|T ) loads more and more in priority a
neighborhood of(θ̂n, Λ̂n). A simple look at (12) and (11)
shows that this will be achieved by the setting (17). Let us
note that this setting is related to the so-called empirical Bayes
approach [24].
From now on, we shall only consider the setting (17) for
the hyperparameters and thusT will not appear any more
in the expression of the prior and posterior densities of the
parameters. We then have from (14)

p(θ,Λ|Zn) = Kn|Λ|n exp
{
−

n∑
i=1

‖yi − f(xi, θ)‖2Λ
}

(19)

whereKn = K−1[T + t(y1:n)] is the normalizing constant.
However with a parameter posterior as (19) the computation
of the posterior predictive density (9) will be intractable for
a general neural modelf . Let us consider then a convergent
approximation ofp(θ,Λ|Zn) allowing the computation of a
convergent approximation ofp(y|x,Zn) under modelM .

C. AL1-convergent approximation of the parameter posterior
density

Let H be the following set of assumptions for modelM :
H1 xi ∈ X a compact subset ofIRl, i = 1, . . . , n.
H2 The model functionf(x, θ) is of classC1 both inx and

θ (this assumption is satisfied by usual networks with
differentiable transfert function in their units).

Let p̂(θ,Λ|Zn) =

Nq

(
θ|θ̂n, Vθ

)
Wid

(
Λ|n+

d+ 1
2

, VΛ

)
(20)
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with

Vθ =
(
2
∑n

i=1 ḟ
′
xi,θ̂n

Λ̂nḟxi,θ̂n

)−1

VΛ =
∑n

i=1(yi − f(xi, θ̂n))(yi − f(xi, θ̂n))′

Let us recall now that under general conditions there exist limit
valuesθ∗ andΛ∗ to which the maximum likelihood estimates
under modelM , θ̂n and Λ̂n, converge almost surely withn
[38], [1]. These values are the true parameter values when
model M is the correct one. When modelM is incorrect
(which is always the case for neural network modelling of
actual data),θ∗ and Λ∗ are the parameter values minimizing
the Kullback-Leibler information criterion between the true
(x, y) data distribution and the(x, y) distribution induced
by modelM . Moreover the parameter posterior distribution
concentrates around these limit valuesθ∗,Λ∗ (see [4], [5] and
especially [1] for details).
The following lemma extends this concentration property to
the distribution of densitŷp(θ,Λ|Zn).

Lemma 1:Suppose assumptionsH are satisfied. LetA be a
measurable set ofΘ×S which contains an open neighborhood
of the limit parameter values(θ∗,Λ∗). Then

lim
n→∞

P̂ (A) = 1 a.s.

where P̂ is the probability measure associated with the
densityp̂(θ,Λ|Zn).

This lemma ensures the consistency ofp̂(θ,Λ|Zn), i.e. its
asymptotic concentration at(θ∗,Λ∗).

Theorem 1:Under assumptionsH

lim
n→∞

∫
|p̂(θ,Λ|Zn)− p(θ,Λ|Zn)|dθdΛ = 0 a.s. (21)

Remark: In the same way it could have been shown that∫ ∣∣∣p̂(θ,Λ)− p(θ,Λ)
∣∣∣dθdΛ n→∞−→ 0 a.s. (22)

with

p̂(θ,Λ) =

Nq

(
θ|θ̂n, 2Vθ

)
Wid

(
Λ|1

2
(n+ d+ 1),

1
2
VΛ

)
(23)

(23) shows that unsurprisingly the conjugate priorp(θ,Λ|T )
with the setting (17) takes the form of a “data-respectful”
distribution for n sufficiently large. Most remarkable is that
the form of this prior approximation and that of the posterior
(20) also respect the usual Bayesian choices for this kinds
of parameters, confirming thus the interest of this conjugate
approach.

D. A L1-convergent approximation of the posterior predictive
density

By definition

p(y|x,Zn) =
∫
p(y|x, θ,Λ)p(θ,Λ|Zn)dθdΛ (24)

Let

p̂(y|x,Zn) =
∫
p̂(y|x, θ,Λ)p̃(θ,Λ|Zn)dθdΛ (25)

with p̃(θ,Λ|Zn) aL1-convergent approximation of the param-
eter (θ,Λ) posterior density.
and

p̂(y|x, θ,Λ) =
|Λ|1/2

(2π)d/2
exp

{
− 1

2
‖y − f(x, θ̂n)‖2Λ

}
(26)

Theorem 2:Under assumptionsH

lim
n→∞

∫ ∣∣∣ p̂(y|x,Zn)− p(y|x, Zn)
∣∣∣ dy = 0 a.s. (27)

Now takep̃(θ,Λ|Zn) as equal tôp(θ,Λ|Zn) as given by (20),
and let

p̂n(y|x, Zn) = Std(y|f(x, θ̂n),
n+ 1
n

Λ̂n, 2n+ 2) (28)

Corollary 1: Under assumptionH

lim
n→∞

∫ ∣∣∣ p̂n(y|x,Zn)− p(y|x,Zn)
∣∣∣ dy = 0 a.s. (29)

Proof: bringingp̃(θ,Λ|Zn) ≡ p̂(θ,Λ|Zn) into (25) with (26),
leads easily to (28).
A tractable convergent approximation̂p(y|x,Zn) of the pos-
terior predictive densityp(y|x,Zn) under modelM is now
available, which can be applied to each modelM j ∈M. Ac-
cording to (7), a consistent approximation̂Uj of the expected
utility of model M j can now be computed, forj = 1, . . . , J .

V. M ANAGING THE NEURAL MODEL LIKELIHOOD

MULTI -MODALITY

The posterior predictive density approximation proposed in
the previous section to compute the expected utility approxi-
mationÛ of a given neural modelM , assumes that̂θn in (18)
is the argument of the minimum of the quadratic cost function

det
[∑n

i=1

(
yi−f(xi, θ)

)(
yi−f(xi, θ)

)′]
or equivalently the

argument of the maximum of the related likelihood. It has been
shown that for a general likelihood function the uniqueness of
this optimum is ultimately satisfied under regularity conditions
as the data set sizen increases [13]. But for a multilayer per-
ceptron model there are always several families of equivalent
local optima. These families are connected with two types
of symmetry transformation corresponding to parameter-sign
changes and neuron interchanges [11]. These transformations
lead to equivalent network input-output mappings. More pre-
cisely, for aH-hidden-layer network withmh neurons on
layer h, the overall symmetry factor is SF= Πh=H

h=1 mh!2mh

[37]. This shows that each local mode of the likelihood
function (or local minima of the sum of squares surface)
belongs to a class of SF equivalent optima. The total number
TNC of such classes can hardly be analytically determined in
general. But a reasonable exploration of the network parameter
space can reveal the NC most attractive of such classes. The
missing remaining classes, of lower attractiveness and lower
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contribution to the topology of the likelihood surface, will not
have much consequence forn sufficiently large.
Let θ̂c,s be the location of thesth local likelihood optimum
within the cth class, with1 ≤ c ≤ NC and 1 ≤ s ≤ SF.
Let p̂(θ,Λ|θ̂c,s) and p̂(θ,Λ|Zn, θ̂c,s) be the parameter prior
and parameter posterior approximations computed respectively
from (23) and (20), for̂θn = θ̂c,s.
Under the assumption that the overlap between all the prior
densitiesp̂(θ,Λ|θ̂c,s) is negligible and that the NC×SF local
optima have all the same probability of being reached by the
parameter estimation procedure, it can be shown that a reli-
able approximation of the neural network posterior predictive
density is instead of (28) given by

p̂(y|x,Zn) =

(
1
/ NC∑

c=1

Kc

)
NC∑
c=1

Kcp̂(y|x,Zn, θ̂c) (30)

where

• p̂(y|x,Zn, θ̂c) is given by (28) in whichθ̂c can be
taken as any of the SF equivalent local optimal arguments
θ̂c,s, 1 ≤ s ≤ SF.

• Kc =
∫
p(y1:n|x1:n, θ,Λ)p̂(θ,Λ|θ̂c)dθdΛ

=
(2π)

q
2 π

d(d−1)
4

∏d
j=1 Γ(α+ 1−j

2 )
|v|α

(31)

with α = n + d+1
2 and v =

∑n
i=1

(
yi −

f(xi, θ̂c)
)(
yi − f(xi, θ̂c)

)′
= nΛ̂−1

n .

Let us note that under the same assumption the minimum
squared error loss prediction of the neural network atx
given Zn, is given by the mean of the posterior predictive
density (30)

ŷ|x,Zn
=

(
1
/ NC∑

c=1

Kc

)
NC∑
c=1

Kcf(x, θ̂c) (32)

VI. CASE STUDIES

The U-criterion as given by (7) has been compared with
usual model selection criteria able to deal with correlated
multioutput responses, on a simulated and on an actual neural
network selection problem. In each of the following case study,
N is the size of the available dataset, from whichn data points
are sampled at random to compute the U-criterion (7) with
k = n (which is of course the best choice fork but also the
most costly) and the CV, AIC and BIC criteria. The MSEP
(mean squared error of prediction) on the remainingN − n
data points is also considered but as a reference criteria.
For a given neural modelM :
The CV criterion is defined as CV =

∑n
i=1 ‖yi −

f(xi, θ̂n−1[i])‖2Q−1 whereθ̂n−1[i] is the maximum likelihood
estimate ofθ on Zn−1[i] and Q is the empirical variance-
covariance matrix of the{yi}i=1,...,n.
For the AIC and BIC criteria usual forms are considered [10]:
AIC = −2logL(θ̂n, Λ̂n) + 2K and BIC= −2logL(θ̂n, Λ̂n) +

K logn, whereK is the total number of the neural model
parameters andL(θ̂n, Λ̂n) is the neural model maximum
likelihood.
The MSEP is defined as MSEP=

∑N
i=n+1

(
yi −

f(xi, θ̂n)
)′
Q−1

(
yi − f(xi, θ̂n)

)
, after the network has been

trained on the first data subset of sizen.

A. A simulated case study

Let us consider the following nine feedforward fully
connected neural structures with three inputsx1, x2, x3 and
two outputsy1, y2:

◦ NNi: one hidden layer of i neurons (6i+2 parameters),
i = 1, · · · , 6.

◦ N6N3: two hidden layers of 6 and 3 neurons respectively
(53 parameters).

◦ N6N8: two hidden layers of 6 and 8 neurons respectively
(98 parameters).

◦ N7N10: two hidden layers of 7 and 10 neurons
respectively (130 parameters).

N = 1000 data points were independently and identically
simulated from network NN5 for a given set of parameter
values, withx1 ∼ U [−10, 10], x2 ∼ N (3, 52), x3 ∼ U [−1, 7]
and an additive Gaussian noiseε on the two outputs,ε ∼
N (0,Σ) with Σ =

[
1.75 0.8
0.8 2.5

]
.

The firstn = 500 data points were used to compute the scores
reached by the nine networks according to the U, CV, AIC and
BIC criteria respectively. The remaining 500 data points were
used to compute the MSEP of each network on this test data
subset. All the results are shown in Table I (winning scores
are in bold. Note that the U-criterion has to be maximized and
the other three ones and the MSEP have to be minimized).
The U and CV-criteria select the right network, NN5, as
does the MSEP on the test data. However, one can note that
the score reached by NN5 contrasts with those of the other
eight networks more sharply according to the U-criterion than
according to the CV-criterion and even than according to the
MSEP. On the other hand, AIC and BIC behave very badly,
by simply ranking the networks according to their growing
complexity. Table II concisely sums up these behaviours
through the pairwise Wilcoxon rank correlation coefficients
of the criteria and the MSEP on the test data set.

TABLE I

SCORINGS OF THE NINE NEURAL MODELS ACCORDING TO THE FOUR

CRITERIA AND THE MSEP - CASE STUDY A

Networks U CV AIC BIC MSEP
NN1 -8.5176 39.164 435.9818 462.3683 45.122
NN2 -7.9224 23.715 446.8827 493.0592 37.946
NN3 -5.0229 5.9486 452.7242 518.6906 10.707
NN4 -2.2254 1.2371 459.5458 545.3020 6.3251
NN5 0.6812 1.0973 464.6480 570.1941 2.0014
NN6 -0.4401 1.1437 475.6331 600.9692 2.8412
N6N3 -2.4138 1.1932 501.6511 628.2354 6.5689
N6N8 -2.2699 1.3934 601.6449 924.8800 6.2608
N7N10 -2.6198 1.3334 664.0071 1092.8 7.7527
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TABLE II

WILCOXON RANK CORRELATIONS OF THE CRITERIA SCORINGS

CASE STUDY A

U CV AIC-BIC MSEP
U 1 0.9167 -0.4834 1

CV 1 -0.5334 0.9167
AIC-BIC 1 -0.4834

B. The spectroscopic Tecator data

The previous Bayesian approach (U-criterion) was applied
to the selection of a 2-output feedforward neural network for
the Tecator meat data [8], [36]. The data recorded by a Teca-
tor spectrometer (the Infratec Food and Feed Analyser) are
available in the Statlib, by courtesy of the Tecator Company
and H. H. Thodberg (http://lib.stat.cmu.edu/datasets/tecator).
In [37], the single-output version of the proposed approach
was applied to the selection of a multilayer perceptron for the
prediction of the fat content of a meat sample on the basis
of its near infrared absorbance spectrum as available in the
Tecator data set. The results were compared to that of the
MacKay’s Bayesian evidence method [22] used by Thodberg
[36]. The goal is now to select a network which best predicts
both the fat and protein meat contents.

1) The data: Following Thodberg recommendations the
first n = 172 samples of the Tecator data set are used
for computing the four selection criteria for each competing
model. The 43 next ones are used to compute the MSEP of
each model. The input variables are 13 preprocessed principal
components of the spectra. The 2 output variables are the fat
and protein meat contents.

2) The competing networks:7 feedforward neural models
with 13 inputs and 2 outputs are considered. These models
were derived from the single-output networkfp with 3 neurons
on a single hidden layer, previously selected by the U-criterion
for the fat prediction problem [37]. These 7 competing neural
models,f1, f2, f3, f4, f5, f6, f7, are made of a single hidden
layer with 1, 2, 3, 4, 5, 6 and 7 fully connected neurons
respectively. Table III shows the score reached by each of
the 7 models for each of the 4 criteria U, CV, AIC, BIC, on
the 172 first samples of the data set and the MSEP of the
related networks on the 43 next samples. One can note that
the U-ranking of the networks is much closer to the MSEP-
ranking, than are the other three criteria rankings. The two
best networks according to the U-criterion,f4, f5, are also
the two best ones according to the MSEP. Idem for the two
worst ones,f1, f2. With regard to the small size of the training
data set with respect to the average parameter number of
the competing networks, the performance of the U-criterion
is rather satisfying. That of the CV-criterion is not so good,
because of the conservative trend of CV which tends to favor
unduly complex structures (CV has ranked the seven networks
according to their decreasing complexity). The respective AIC
and BIC-rankings are even much more unsatisfying, since
unsurprisingly, these two criteria have penalised too much
the network complexity and have simply ranked the seven
networks according to their growing complexity (in contrast

to CV). The pairwise Wilcoxon rank correlation coefficients
displayed by Table IV express strikingly these respective
performances and confirm the quite satisfying behaviour of
the U-criterion with respect to the MSEP.

TABLE III

SCORINGS OF THE SEVEN NEURAL MODELS ACCORDING TO THE FOUR

CRITERIA AND THE MSEP - CASE STUDY B

Networks U CV AIC BIC MSEP
f1 -3.7639 1.9333 135.1183 166.8199 6.7284
f2 -2.4911 1.1056 172.6568 232.5376 5.6680
f3 -1.7563 0.6947 196.1045 284.1645 2.4688
f4 -1.5830 0.6162 229.3208 345.5600 2.1241
f5 -1.7277 0.6105 259.3319 403.7504 2.0931
f6 -1.7796 0.6048 290.8199 463.4175 2.2661
f7 -1.7510 0.5678 322.3335 523.1103 2.8895

TABLE IV

WILCOXON RANK CORRELATIONS OF THE CRITERIA SCORINGS

CASE STUDY B

U CV AIC-BIC MSEP
U 1 0.5714 -0.5714 0.8214

CV 1 -1 0.5357
AIC-BIC 1 -0.5357

VII. C ONCLUSION

This paper shows how the richness of information and the
robustness attached to predictive probability distributions can
benefit to the right selection of a multi-output feedforward
neural net topology. The proposed Bayesian method relies
upon a convergent approximation, built from a conjugate
parameter prior density, of the neural net predictive probability
distribution. This predictive distribution is used to define an
expected utility criterion which can be consistently estimated
on a sample-reuse basis. For a given data set this criterion
detects the neural model in a given set, which on the whole
most favors the likelihood of each observations with respect to
the others. As compared to the evidence approach, which could
be readily extended to multioutput networks, our posterior
density approximations are normal and Wishart rather than
normal, leading to multivariate Student approximations for
the predictive densities. The behaviour of the criterion is
compared, on simulated and actual neural model selection
problems, with the behaviours of classic model selection
criteria as point-prediction-based cross validation criterion and
information-based AIC and BIC criteria. Both comparisons
reveal the satisfactory trade-off reached by this Bayesian cri-
terion between fitness induced by structural neural complexity
and generalization capability offered by simpler structures.
Moreover the greater small-data-set robustness of the criterion
with respect to that of the classic point-wise cross-validation
criterion is also evidenced. Finally, because of its analytic ba-
sis, the computing cost of such a utility criterion is comparable
to that of the standard cross-validation criterion and generally
lower than that of the criteria based on MCMC Bayesian
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learning and without the problem of efficient stopping rules
met by these last criteria.

APPENDIX I
BAYESIAN PRELIMINARIES

Proposition 1 (Bernardo and Smith [6]):Let
Z = (z1, . . . , z`) be a random sample from aw-dimensional
regular exponential family distribution. Its likelihood is given
by

p(Z|φ) =
( ∏̀

j=1

s(zj)
)
g(φ)` exp

{ w∑
i=1

ciψi(φ)
∑̀
j=1

hi(zj)
}

(33)
then the conjugate prior density of the parameter vectorφ has
the form

p(φ|T ) = K[T ]−1g(φ)τ0 exp
{ w∑

i=1

ciψi(φ)τi
}
, φ ∈ Φ

(34)
where T = (τ0, τ1, . . . , τw), vector of hyperparameters, is
such that

K[T ] =
∫

Φ

g(φ)τ0 exp
{ w∑

i=1

ciψi(φ)τi
}
dφ <∞ (35)

Proposition 2 (Bernardo and Smith [6]):Under the as-
sumptions of Proposition 1
(i) the posterior density forφ is

p(φ|Z, T ) = p(φ|T + t`(Z)) (36)

where

T + t`(Z) =
(
τ0 + `, τ1 +

∑̀
j=1

h1(zj), . . . , τw +
∑̀
j=1

hw(zj)
)

(ii) the predictive density for future observations̄Z =
(z̄1, . . . , z̄m) is

p(Z̄|Z, T ) = p(Z̄|T + t`(Z))

=
m∏

j=1

s(z̄j)
K
(
T + t`(Z) + tm(Z̄)

)
K
(
T + t`(Z)

) (37)

where

tm(Z̄) =
(
m,

m∑
j=1

h1(z̄j), . . . ,
m∑

j=1

hw(z̄j)
)

The adaptation of these results to the context of multiresponse
nonlinear regression introduced in Section 2 is straightforward.
In this context,̀ = 1, z1 = y1:n and dim(z1) = nd.

APPENDIX II
PROOFS

A. Proof of Lemma 1

Let us first show that the expectation of the probability
distribution of densityp̂(θ,Λ|Zn) converges to(θ∗,Λ∗) as
defined in IV-C.
By definition of the normal and the Wishart probability distri-
butions and by the almost sure convergence of the maximum
likelihood estimators(θ̂n, Λ̂n) to (θ∗,Λ∗), it comes

Ep̂

(
θ,Λ|Zn

)
=
(
θ̂n,

2n+ d+ 1
2n

Λ̂n

)
n→∞−→

(
θ∗,Λ∗

)
a.s.

Let us show now that the variance of the probability
distribution of densitŷp(θ,Λ|Zn) tends to zero asn grows to
infinity.

• Let βn, be the inverse of the variance-covariance matrix
of θ

V −1
θ =

(
2

n∑
i=1

ḟ ′
xi,θ̂n

Λ̂nḟxi,θ̂n

)−1

= βn

Let us show thatβn grows to infinity withn:

βn = 2
n∑

i=1

ḟ ′
xi,θ̂n

Λ̂nḟxi,θ̂n

= 2n
1
n

n∑
i=1

ḟ ′
xi,θ̂n

Λ̂nḟxi,θ̂n

= 2nβ̃n

Let

β̇n =
1
n

n∑
i=1

ḟ ′xi,θ∗Λ∗ḟxi,θ∗

According to the strong law of large numbers, as thexi are
i.i.d., one has

lim
n→∞

β̇n = Ex[ḟ ′x,θ∗Λ∗ḟx,θ∗ ] = β̃ a.s.

As the{xi} belong to a compact set andf is C1, we can
deduce that

lim
n→∞

1
n

n∑
i=1

ḟ ′
xi,θ̂n

Λ̂nḟxi,θ̂n
= β̃ a.s.

Let us show that̃β is positive definite: For allu ∈ IRq,
for all n,
u′β̃nu ≥ 0 and then u′β̃u ≥ 0 . If u is such that

u′β̃u = 0, we have for alli ∈ IN

lim
n→∞

‖ḟxi,θ̂n
u‖Λ̂n

= ‖ḟxi,θ∗ u‖Λ∗ = 0 a.s.

u 6= 0, would imply thatf does not depend on all the param-
etersθ, which contradicts the definition off . u must then be
equal to zero and̃β is positive definite. Then,V −1

θ

n→∞
≈ n β̃

and Vθ
n→∞−→ 0.

• Let us study the variance ofΛ :
Let λij be theijth term of the matrixΛ which follows the
Wishart distribution included in (20).
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According to [32] about the Wishart distribution: λii ∼(
2
n Λ̂n

)
ii
χ2

2n+d+1

then

V (λii) =
8
(
Σ̂n

)2

ii
(2n+ d+ 1)

n2

n→∞−→ 0. (38)

Let li,j be the d-dimensional vector with theith and jth

components equal to1 and the others equal to0. According
to [32] λii + λjj + 2λij ∼ li,j

(
2
n Λ̂n

)
l′i,jχ

2
2n+d+1

and V (λii + λjj + 2λij) =
8(li,j

(
Λ̂n

)
l′i,j)

2(2n+ d+ 1)

n2

n→∞−→ 0.

Then V (λij)
n→∞−→ 0.

Let A be a measurable subset ofΘ × S including an
open neighbourhood of(θ∗,Λ∗). There existsε such that
Bε(θ∗,Λ∗) ⊂ A, whereBε(θ∗,Λ∗) is the closed parallelotope
of side ε centered at(θ∗,Λ∗). As (θ̂n, Λ̂n) convergea.s. to
(θ∗,Λ∗), there existsNε ∈ IN, such that for alln > Nε,
Bε/2(θ̂n, Λ̂n) ⊂ Bε(θ∗,Λ∗) a.s.
Then

P̂ (Bε/2(θ̂n, Λ̂n)) ≤ P̂ (Bε(θ∗,Λ∗)) ≤ P̂ (A) a.s.

Let ηi, i = 1, . . . , q, q + 1, . . . , q + d(d + 1)/2 denote theq
components ofθ and thed(d + 1)/2 components ofΛ. Let
η̂n

i = Ep̂n
(ηi). Let K = q + d(d + 1)/2 be the total number

of network model parameters .

P̂ (Bε/2(θ̂n, Λ̂n)) = 1− P̂ (Bε/2(θ̂n, Λ̂n))
= 1− P̂ ({η : max

i=1,...,K
|ηi − η̂n

i | >
ε

2
})

According to the Markov inequality, for alli = 1, . . . ,K, one
has

P̂ (|ηi − η̂n
i | > ε/2) ≤ 4V (ηi)

ε2

As we shown previously, for all i = 1, . . . ,K,
limn→∞ V (ηi) = 0. Hence, for allε > 0 there existsNi ∈ IN
such that 4V (ηi)

ε2 ≤ ε for n > Ni. Let N = max{Ni, i =
1, . . . ,K}. For all i = 1, . . . ,K and alln > N , one has

P̂ (|ηi − η̂n
i | > ε/2) ≤ ε

and then

P̂ ( max
i=1,...,K

|ηi − η̂n
i | > ε/2) ≤ ε.

Finally, for all ε > 0, there existsN ∈ IN such that for all
n > N

P̂ (A) ≥ 1− ε a.s.

B. Proof of Theorem 1

Let βn =
(
2
∑n

i=1 ḟ
′
xi,θ̂n

Λ̂nḟxi,θ̂n

)−1

.
Let C be a compact subset ofΘ × S including an open
neighbourhood of(θ∗,Λ∗).
Let Cc be the subset ofΘ× S complementary toC.

∫
|p̂(θ,Λ|Zn)− p(θ,Λ|Zn)|dθdΛ

=
∫

C

|p̂− p| +
∫

Cc

|p̂− p|

≤
∫

C

|p̂− p| +
∫

Cc

p̂ +
∫

Cc

p (39)

By Lemma 1
∫

Cc

p̂(θ,Λ|Zn)dθdΛ n→∞−→ 0 a.s.

Moreover, by consistency of posterior densities [1]∫
Cc

p(θ,Λ|Zn)dθdΛ n→∞−→ 0 a.s. To prove the theorem it

remains to show that
∫

C

|p̂(θ,Λ|Zn)−p(θ,Λ|Zn)|dθdΛ n→∞−→
0 a.s.
Let CS = ProjΘ(C) × S, where ProjΘ(C) denotes the
projection ofC uponΘ, and let us note thatC ⊂ CS .
We are going to show the stronger result

lim
n→∞

∫
CS

|p̂(θ,Λ|Zn)− p(θ,Λ|Zn)|dθdΛ = 0 a.s.

From (19)

p(θ,Λ|Zn) = Kn|Λ|n exp
{
−

n∑
i=1

‖yi − f(xi, θ)‖2Λ
}

(40)

and from (20)

p̂(θ,Λ|Zn) = K̂n|Λ|n exp
{
− 1

2
‖θ − θ̂n‖2βn

−
n∑

i=1

‖yi − f(xi, θ̂n)‖2Λ
}

(41)

whereK̂n is a normalizing constant.

Let us denote Êp,CS [.] =
∫

CS

[.]p̂(θ,Λ|Zn)dθdΛ.

Let us show that the Kullback-Leibler distance between the
distributionsp and p̂ over CS tends almost surely to 0 asn
grows to infinity. This will result in their convergence inL1-
norm.

KCS (p̂, p)

=
∫

CS

p̂(θ,Λ|Zn) log
p̂(θ,Λ|Zn)
p(θ,Λ|Zn)

dθdΛ

= log
K̂n

Kn
+ Ep̂,CS

[
− 1

2
‖θ − θ̂n‖2βn

−
n∑

i=1

‖yi − f(xi, θ̂n)‖2Λ +
n∑

i=1

‖yi − f(xi, θ)‖2Λ
]

(42)

let us consider the successive terms ofKCS (p̂, p):
• Let En

CS = Ep̂,CS [− 1
2‖θ − θ̂n‖2βn

], which is finite.
Since‖θ − θ̂n‖2βn

∼ χ2
q underp̂, it comes immediatly

0 > En
CS > Ep̂[−

1
2
‖θ − θ̂n‖2βn

] = −q
2

• For all i = 1, . . . , n, in a neighbourhood of̂θn it holds
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‖yi − f(xi, θ)‖2Λ
= ‖yi − f(xi, θ̂n) + ḟxi,θ̂n

(θ − θ̂n)‖2Λ + o(‖θ − θ̂n‖2)

= ‖yi − f(xi, θ̂n)‖2Λ + ‖ḟxi,θ̂n
(θ − θ̂n)‖2Λ

+2 < yi − f(xi, θ̂n), ḟxi,θ̂n
(θ − θ̂n) >Λ

+o(‖θ − θ̂n‖2) (43)

and

−
n∑

i=1

‖yi − f(xi, θ̂n)‖2Λ +
n∑

i=1

‖yi − f(xi, θ)‖2Λ

=
n∑

i=1

‖ḟxi,θ̂n
(θ − θ̂n)‖2Λ

+2
n∑

i=1

< yi − f(xi, θ̂n), ḟxi,θ̂n
(θ − θ̂n) >Λ

+n o(‖θ − θ̂n‖Λ) (44)

According to the definition of the Wishart probability

distribution, Êp[Λ] =
2n+ d+ 1

2n
Λ̂n. Then

Ep̂,CS [
n∑

i=1

‖ḟxi,θ̂n
(θ − θ̂n)‖2Λ]

= Ep̂,CS [Ep̂[
n∑

i=1

‖ḟxi,θ̂n
(θ − θ̂n)‖2Λ|θ]]

= Ep̂,CS [
2n+ d+ 1

2n

n∑
i=1

‖ḟxi,θ̂n
(θ − θ̂n)‖2

Λ̂n
|

=
2n+ d+ 1

2n
Ep̂,CS [

1
2
‖θ − θ̂n‖2βn

]

= −2n+ d+ 1
2n

En
CS (45)

In the same way

Ep̂,CS [
n∑

i=1

< yi − f(xi, θ̂n), ḟxi,θ̂n
(θ − θ̂n) >Λ]

= Ep̂,CS

[
Ep̂[

n∑
i=1

< yi − f(xi, θ̂n), ḟxi,θ̂n
(θ − θ̂n) >Λ |θ]

]
=

2n+ d+ 1
2n

Ep̂,CS

[
n∑

i=1

< yi − f(xi, θ̂n), ḟxi,θ̂n
(θ − θ̂n) >Λ̂n

]
=

2n+ d+ 1
2n

Ep̂,CS [0]

= 0 (46)

since(θ̂n, Λ̂n) are the least square estimators of(θ,Λ).

The Kullback-Leibler distance betweenp and p̂ overCS
then becomes:

KCS (p̂, p) = log K̂n

Kn
+ En

CS
− 2n+d+1

2n En
CS

+Ep̂,CS [n o(‖θ − θ̂n‖2)]
(47)

Let us show now thatlimn→∞ Ep̂,CS [n o(‖θ− θ̂n‖2)] =
0:
It was shown in Section B.1 thatβn ∼ 2nβ̃ asn grows
to infinity, with β̃ a positive definite matrix.
By the equivalence of norms onIRd there existα1 and
α2 positive, such that

α1‖θ − θ̂n‖2β̃ ≤ ‖θ − θ̂n‖2 ≤ α2‖θ − θ̂n‖2β̃

α1n‖θ − θ̂n‖2β̃ ≤ n‖θ − θ̂n‖2 ≤ nα2‖θ − θ̂n‖2β̃
and then forn large,

1
2
α1‖θ − θ̂n‖2βn

≤ n‖θ − θ̂n‖2 ≤
1
2
α2‖θ − θ̂n‖2βn

As ‖θ − θ̂n‖2βn
∼ χ2

q underp̂, it comes

1
2
α1q ≤ Ep̂[n‖θ − θ̂n‖2] ≤

1
2
α2q

There exist theñα1 and α̃2 positive such that

α̃1 ≤ Ep̂,CS [n‖θ − θ̂n‖2] ≤ α̃2

Let us come back to the study of theo(‖θ − θ̂n‖2), in
(43):
For all couple(xi, yi) let us notegi

n(θ) = o(‖θ− θ̂n‖2).
Then

n∑
i=1

gi
n(θ) = n o(‖θ − θ̂n‖2)

Let g̃i
n(θ) =

gi
n(θ)

‖θ − θ̂n‖2
and g̃n(θ) =

1
n

n∑
i=1

g̃i
n(θ).

Then limθ→θ̂n
g̃n(θ) = 0.

As limn→∞ θ̂n = θ∗ a.s., for all i ∈ IN∗ we have
limn→∞ g̃i

n(θ∗) = 0. Moreover as the{xi} belong to
the compact subsetX and the model functionf is C1

with respect tox andθ, the last convergence is uniform
with respect tox:

∀ ε > 0, ∃ Nε : ∀ x ∈ X , ∀ n > Nε, |g̃i
n(θ∗)| < ε

and

∀ ε > 0, ∃ Nε : ∀ n > Nε, |g̃n(θ∗)| < ε

then

lim
n→∞

g̃n(θ∗) = 0

Now let us introducẽgn in the expectation of interest :
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Ep̂,CS [n o(‖θ − θ̂n‖2)] = Ep̂,CS [g̃n(θ)n‖θ − θ̂n‖2]

For all ε > 0, let Vε be the ball of radiusε centred
at θ∗,Λ∗. Let us chooseε sufficiently small such that
Vε ⊂ CS . Then

Ep̂,CS [n o(‖θ − θ̂n‖2)] =∫
CS\Vε

g̃n(θ)n‖θ − θ̂n‖2p̂(θ,Λ|Zn)dθdΛ

+
∫

Vε

g̃n(θ)n‖θ − θ̂n‖2p̂(θ,Λ|Zn)dθdΛ (48)

As p̂ is consistent, for allε > 0 such thatVε ⊂ CS there
existsNε such that for alln > Nε∫

CS\Vε

n‖θ − θ̂n‖2p̂(θ,Λ|Zn)dθdΛ < ε

Then for alln > Nε∣∣∣Ep̂,CS [n o(‖θ − θ̂n‖2)]
∣∣∣ ≤ sup

CS

g̃n(θ)ε+ sup
Vε

g̃n(θ)α̃2

As supCS g̃n(θ) is bounded, the first term tends to
zero with ε. But as ε tends to zero,Vε tends to
{θ∗}. As n grows to infinity, thensupVε

g̃n(θ) tends to
limn→∞ g̃n(θ∗) = 0.
We conclude that

lim
n→∞

Ep̂,CS [n o(‖θ − θ̂n‖2)] = 0 (49)

• Finally let us show thatlim
n→∞

log
K̂n

Kn
= 0 :

To alleviate notations let us denote, from (40) and (41):

p = Kn × hn and p̂ = K̂n × ĥn.

Let us follow areductio ad absurdumby assuming that
limn→∞ K̂n/Kn 6= 1.
Because of (44), (45) and (46), forn→∞

Ep̂,CS

[
log

ĥn

hn

]
→ 0 and Êp,CS

[
log

hn

ĥn

]
→ 0 a.s.

(50)

i) Suppose first that lim
n→∞

K̂n

Kn
< 1 :

then

lim
n→∞

Ep̂,CS

[hn

ĥn

]
= lim

n→∞
K̂n

∫
CS

hndθdΛ

< lim
n→∞

Kn

∫
CS

hndθdΛ

≤ lim
n→∞

∫
KnhndθdΛ

= 1 (51)

Due to the convexity of the exponential function and
the consistency of̂p(θ,Λ|Zn) there existsN such

that for n > N , Jensen inequality can be applied to

Ep̂,CS [
hn

ĥn

], and gives

exp Ep̂,CS

[
log

hn

ĥn

]
≤ Ep̂,CS

[hn

ĥn

]
but By (50)

exp Ep̂,CS

[
log

hn

ĥn

]
n→∞−→ 1

then lim
n→∞

Ep̂,CS

[hn

ĥn

]
≥ 1, which contradicts (51).

ii) Suppose now that lim
n→∞

K̂n

Kn
> 1 :

By a similar reasoning and sincep(θ,Λ|Zn) is
consistent

lim
n→∞

Ep̂,CS

[hn

ĥn

]
> lim

n→∞

∫
CS

KnhndθdΛ = 1

which implies

lim
n→∞

log Ep̂,CS

[ ĥn

hn

]
< 0. (52)

Due to the convexity of the -log function and the pos-

sibility to apply the Jensen inequality to Ep̂,CS

[ ĥn

hn

]
,

for sufficiently greatn, we have by (50)

− log Ep̂,CS

[ ĥn

hn

]
≤ Ep̂,CS

[
log

hn

ĥn

]
n→∞−→ 0

which contradicts (52).

From i) and ii) we can deduce that
limn→∞ log(K̂n/Kn) = 0, and then, from (47)
and (49) that

KCS (p̂, p) n→∞−→ 0 (53)

This completes the proof of Theorem 1, since Kullback
convergence dominatesL1 convergence overCS and then
overC.

C. Proof of Theorem 2

D=
∫ ∣∣∣ p̂(y|x,Zn)− p(y|x, Zn)

∣∣∣ dy
=
∫ ∣∣∣ ∫ p̂(y|θ,Λ, x)p̂(θ,Λ|Zn)dθdΛ

−
∫
p(y|θ,Λ, x)p(θ,Λ|Zn)dθdΛ

∣∣∣ dy
=
∫ ∣∣∣ ∫ p(y|θ,Λ, x)

[
p̂(θ,Λ|Zn)− p(θ,Λ|Zn)

]
dθdΛ

+
∫
p̂(θ,Λ|Zn)

[
p̂(y|θ,Λ, x)− p(y|θ,Λ, x)

]
dθdΛ

∣∣∣ dy
≤
∫
p(y|θ,Λ, x)

∣∣∣ p̂(θ,Λ|Zn)− p(θ,Λ|Zn)
∣∣∣ dθdΛdy

+
∫
p̂(θ,Λ|Zn)

∣∣∣ p̂(y|θ,Λ, x)− p(y|θ,Λ, x)
∣∣∣ dθdΛdy
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By Fubini’s theorem

D≤
∫ ∣∣∣ p̂(θ,Λ|Zn)− p(θ,Λ|Zn)

∣∣∣ dθdΛ

+
∫
p̂(θ,Λ|Zn)

∫ ∣∣∣ p̂(y|θ,Λ, x)− p(y|θ,Λ, x)
∣∣∣ dydθdΛ

= T1 + T2

As p̂(θ,Λ|Zn) is assumed to be aL1-convergent approxima-
tion of p(θ,Λ|Zn), T1 tends to zero asn grows to infinity. Let
us show that the same is true forT2.

Let h(θ, θ̂n) =
∫ ∣∣∣ p̂(y|θ,Λ, x)−p(y|θ,Λ, x) ∣∣∣ dy. Obviously

0 ≤ h(·, ·) ≤ 2. The mappingh is continuous andh(θ̂n, θ̂n) =
0 for all n ∈ IN∗. As limn→∞(θ̂n, Λ̂n) = (θ∗,Λ∗) a.s., we
deduce thatlimn→∞ h(θ∗, θ̂n) = 0. Moreover, for allε > 0
there exists a neighbourhood of(θ∗,Λ∗), Vε, and an integer
N1 such that for almost all(θ,Λ) ∈ Vε and alln > N1 we
haveh(θ, θ̂n) < ε/2.
Let us now splitT2 according toVε :

T2 =
∫
p̂(θ,Λ|Zn)h(θ, θ̂n)dθdΛ

T2 =
∫

Vε

+
∫

V c
ε

T2 ≤
∫

V c
ε

p̂(θ,Λ|Zn)h(θ, θ̂n)dθdΛ + ε/2

T2 ≤ 2
∫

V c
ε

p̂(θ,Λ|Zn)dθdΛ + ε/2

Due to the consistency of̂p(θ,Λ|Zn) asn grows to infinity,
there exists an integerN2 such that for alln > N2 we have∫

V c
ε

p̂(θ,Λ|Zn)dθdΛ < ε/4 and thenT2 < ε.

It follows thatD tends to zero asn grows to infinity.
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