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Abstract
21

State-space models have recently been proposed as a convenient and flexible22

framework for specifying stochastic models for the dynamics of wild animal pop-23

ulations. Here we focus on the modelling of data on marked individuals which24



is frequently used in order to estimate demographic parameters while accounting1

for imperfect detectability. We show how usual models to deal with capture-2

recapture and ring-recovery data can be fruitfully written as state-space models.3

An illustration is given using real data and a Bayesian approach using MCMC4

methods is implemented to estimate the parameters. Eventually, we discuss fu-5

ture developments that may be facilitated by the SSM formulation.6

1 Introduction7

The estimation of animal survival is essential in population biology to investigate pop-8

ulation dynamics, with important applications in the understanding of ecological, evo-9

lutionary, conservation and management issues for wild populations (Pollock, 1991;10

Williams et al., 2002). While the time to event is known in medical, social or engi-11

neering sciences (death, marriage and failure respectively), models for estimating wild12

animal survival must incorporate nuisance parameters to account for incomplete de-13

tectability in monitoring individuals (Schwarz et Seber, 1999). Typically, individuals14

are captured, marked and can be resighted or recaptured (encountered thereafter) to15

construct encounter histories which consist of sequences of 1’s and 0’s according to16

whether a detection occurs or not. The likelihood for such data arises from products17

of multinomial distributions whose cell probabilities are complex functions of survival18

probabilities - parameters of primary interest - and encounter probabilities - nuisance19

parameters (Cormack, 1964; Jolly, 1965; Seber, 1965 - CJS thereafter).20

In this note, we show how the population process can be fruitfully disentangled,21

by distinguishing the underlying demographic process, i.e. the survival (as well as22

transitions between sites/states if needed), from its observation, i.e. the detectability.23

This leads us to consider a natural formulation for capture-recapture models using state-24
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space models (SSMs). Our contribution is in line with a recent paper by Buckland et1

al. (2004) who have proposed to adopt SSMs as a convenient and flexible framework2

for specifying stochastic models for the dynamics of wild animal populations.3

Thus far, SSMs have been mainly used for time series of animal counts (de Valpine,4

2004; Millar and Meyer, 2000) or animal locations (Anderson-Sprecher and Ledolter,5

1991) to allow true but unobservable states (the population size or trajectory) to be6

inferred from observed but noisy data (see Clark et al., 2005 and Wang, 2006 for7

reviews). The novelty of our approach lies in the use of SSMs to fit capture-recapture8

models to encounter histories.9

In Section 2, we discuss how to express the CJS model under the form of a SSM. The10

implementation details are provided, and real data are presented to compare parameter11

estimates as obtained using the standard product-multinomial and the SSM approaches.12

In Section 3, the flexibility of the state-space modeling approach is demonstrated by13

considering two widely used alternative schemes for collecting data on marked animals.14

Finally, Section 4 discusses important developments of capture-recapture models facil-15

itated by the SSM formulation. We emphasize that this general framework has a great16

potential in population ecology modelling.17

2 State-space modelling of capture-recapture data18

We focus here on the CJS model for estimating animal survival based on capture-19

recapture data, as this model is widely used in the ecological and evolutionary litterature20

(e.g. Lebreton et al., 1992).21
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2.1 Likelihood1

We first define the observations and then the states of the system. We assume that2

n individuals are involved in the study with T encounter occasions. Let Xi,t be the3

binary random variable taking values 1 if individual i is alive at time t and 0 if it is4

dead at time t. Let Yi,t be the binary random variable taking values 1 if individual i is5

encountered at time t and 0 otherwise. Note that we consider the encounter event as6

being physically captured or barely observed. The parameters involved in the likelihood7

are φi,t, the probability that an animal i survives to time t + 1 given that it is alive8

at time t (t = 1, . . . , T − 1), and pi,t the probability of detecting individual i at time t9

(t = 2, . . . , T ). Let finally ei be the occasion where individual i is encountered for the10

first time. A general state-space formulation of the CJS model is therefore given by:11

Yi,t|Xi,t ∼ Bernoulli(Xi,tpi,t), (1)12

Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφi,t), (2)13

for t ≥ ei, with pi,ei
= 1 and where Equation (1) and Equation (2) are the observation14

and the state equations respectively. This formulation naturally separates the nuisance15

parameters (the encounter probabilities) from the parameters of actual interest i.e. the16

survival probabilities, the latter being involved exclusively in the state Equation (2).17

Such a clear distinction between a demographic process and its observation makes the18

description of a biological dynamic system much simpler and allows complex models19

to be fitted (Pradel, 2005; Clark et al., 2005). We will refer to this formulation as20

the individual state-space CJS model (individual SSM CJS hereafter). The rationale21

behind the above formulation is as follows. We give the full details for the observation22

Equation (1) only, as a similar reasoning easily leads to Equation (2). If individual i is23
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alive at time t, then it has probability pi,t of being encountered and probability 1− pi,t1

otherwise, which translates into Yi,t is distributed as Bernoulli(pi,t) given Xi,t = 1. Now2

if individual i is dead at time t, then it cannot be encountered, which translates into3

Yi,t is distributed as Bernoulli(0) given Xi,t = 0. Putting together those two pieces of4

reasoning, the distribution of the observation Yi,t conditional on the state Xi,t is given5

by Equation (1).6

Statistical inference then requires the likelihood of the state-space model specified7

above. Assuming independence of individuals, the likelihood is given by the product8

of all individual likelihood components. The likelihood component for individual i is9

the probability of the vector of observations YT
i = (Yi,ei

, . . . , Yi,T ) which gathers the10

information set up to time T for this particular individual. Conditional on the first11

detection, the likelihood component corresponding to individual i is therefore given by12

(e.g. Harvey, 1989)13

∫

Xi,ei

. . .

∫

Xi,T

[Xi,ei
]







T
∏

t=ei+1

[Yi,t|Xi,t][Xi,t|Xi,t−1]







dXi,ei
. . . dXi,T (3)

14

where [X] denotes the distribution of X and Xi,ei
the initial state of individual i which15

is assumed to be alive. Because we deal with binary random vectors, we used the16

counting measure instead of the Lebesgue measure.17

In its original formulation, the CJS makes important assumptions regarding indi-18

viduals. First, all individuals share the same parameters, which means that the survival19

and detection probabilities depend on the time index only. In mathematical notation,20

we have φi,t = φt and pi,t = pt for all i = 1, . . . , n, so Equation (1) and Equation (2)21

become Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφt) and Yi,t|Xi,t ∼ Bernoulli(Xi,tpt) respectively.22

Second, the CJS model also assumes independence between individuals. By using sim-23
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ple relationships between Bernoulli and Binomial distributions, one can finally fruitfully1

formulates the original CJS model under the following state-space model:2

Yt|Xt ∼ Bin(Xt − ut, pt) (4)3

Xt+1|Xt ∼ Bin(Xt, φt) + ut+1 (5)4

where Xt is the number of survivors from time t plus the number of newly marked5

individuals at time t, ut, and Yt is the total number of previously marked individuals6

encountered at time t. We will refer to this formulation as the population state-space7

CJS model (population SSM CJS hereafter). Interestingly, specifying the system un-8

der a state-space formulation now requires much less equations than the individual9

SSM CJS model, which may avoid the computational burden. Nevertheless, while the10

individual SSM CJS involves parameters for every single individual and sampling occa-11

sion, the population SSM CJS model makes the strong assumptions that all individuals12

behave the same as well as independently, which may be of little relevance from the13

biological point of view. To cope with this issue, in-between modelling can be achieved14

by considering age effects or groups classes in the population SSM model (Lebreton et15

al., 1992). Finally, covariates can be incorporated in order to assess the effect of envi-16

ronment such as climate change, most conveniently by writing the relationship between17

the target probabilities and the predictors on the logit scale (Pollock, 2002).18

2.2 Implementation19

Fitting SSMs is complicated due to the high-dimensional integral involved in the indi-20

vidual likelihood Equation (3). To circumvent this issue, several techniques have been21

proposed including Kalman filtering, Monte-Carlo particle filtering (such as sequential22
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importance sampling) and MCMC (see Clark et al., 2005 and Wang, 2006 for reviews).1

Our objective here is not to discuss these different methods. For our purpose, we adopt2

the MCMC technique which is now widely used in biology (Ellison, 2004; Clark, 2005),3

in particular for estimating animal survival (Seber et Schwarz, 1999; Brooks et al.,4

2000). Besides, this is to our knowledge the only methodology which comes with an5

efficient and flexible program to implement it, which, in our case, will allow biologists6

to easily and rapidly adopt our approach.7

In addition to the difficulty of estimating model parameters, the use of SSMs raises8

several important issues regarding identifiability, model selection and goodness-of-fit9

(Buckland et al. 2004) that were not discussed here. Noteworthy, Bayesian modelling10

using MCMC methods offer possible solutions reviewed in Gimenez et al. (submitted).11

2.3 Illustration12

We consider capture-recapture data on the European dipper (Cinclus cinclus) that were13

collected between 1981 and 1987 (Lebreton et al., 1992). The data consists of marking14

and recaptures of 294 birds ringed as adults in eastern France. We applied standard15

maximum-likelihood estimation (Lebreton et al. 1992) and MCMC techniques (Brooks16

et al. 2000) using the product-multinomial likelihood and the state-space likelihood of17

Equation (3) in combination with Equation (1) and Equation (2). We ran two overdis-18

persed parallel MCMC chains to check whether convergence was reached (Gelman,19

1996). We used 10,000 iterations with 5,000 burned iterations for posterior summariza-20

tion. We used uniform flat priors for both survival and detection probabilities. The21

simulations were performed using WinBUGS (Spiegelhalter et al., 2003). The R (Ihaka22

and Gentleman, 1996) package R2WinBUGS (Sturtz et al., 2005) was used to call Win-23

BUGS and export results in R. This was especially helpful when converting the raw24
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encounter histories into the appropriate format, generating initial values and calculate1

posterior modes. The programs are available in Appendix A. Posterior summaries for2

encounter and survival probabilities are given in Table 1, along with their posterior3

probability distributions that are displayed in Figure 1.4

[Table 1 about here.]5

[Figure 1 about here.]6

Survival estimates were uniformally similar whatever the method used (Table 1). In7

particular, there is a clear decrease in survival 1982-1983 and 1983-1984, corresponding8

to a major flood during the breeding season in 1983 (Lebreton et al., 1992).9

In contrast, posterior medians of detection probabilities using the CJS SSM ap-10

proach are quite different from the classical maximum likelihood estimates, but more11

similar to the posterior medians obtained with the product-multinomial likelihood ap-12

proach (Table 1). These discrepancies are no longer present when posterior modes13

are examined, as expected (recall that we use non-informative uniform distributions as14

priors for all parameters).15

The last survival probability as well as the last detection probability are estimated16

with high variability (Table 1 and Figure 1). The fact that these two parameters cannot17

be separately estimated is not surprising since the CJS model is known to be parameter-18

redundant (Catchpole and Morgan, 1997). Also, the first survival probability and the19

first detection probability are poorly estimated, due to the fact that very few individuals20

were marked at the first sampling occasion (approximately 7% of the full data set).21

In terms of time computation, the MCMC approach using a product-multinomial22

likelihood took 30 seconds to run and a few second for the classical approach, while23
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the MCMC approach using the SSM likelihood took 4 minutes (512Mo RAM, 2.6GHz1

CPU).2

3 Further state-space modelling3

3.1 Multistate capture-recapture models4

Multistate capture-recapture models (Arnason, 1973; Schwarz et al., 1993; AS hereafter)5

are a natural generalization of the CJS model in that individuals can move between6

states, according to probabilities of transition between those states. States can be either7

geographical sites or states of categorical variables like reproductive status or size class8

(Lebreton and Pradel, 2002). We provide here a state-space modelling formulation9

of the AS model (Dupuis, 1995; Newman, 1998; Clark et al., 2005). Without loss of10

generality, we consider 2 states. Let Xi,t be the random state vector taking values11

(1, 0, 0), (0, 1, 0) and (0, 0, 1) if, at time t, individual i is alive in state 1, 2 or dead12

respectively. Let Yi,t be the random observation vector taking values (1, 0, 0), (0, 1, 0)13

and (0, 0, 1) if, at time t, individual i is encountered in state 1, 2 or not encountered.14

Parameters involved in the modelling include φrs
i,t, the probability that an animal i15

survives to time t + 1 given that it is alive at time t (t = 1, . . . , T − 1) and makes the16

transition between state r and state s over the same interval (r, s = 1, 2), as well as pr
i,t17

the probability of detecting individual i at time t in state r (t = 2, . . . , T , r = 1, 2). A18

state-space formulation for the multistate AS model is given by:19

Yi,t|Xi,t ∼ Multinomial

















1, Xi,t

















p1
i,t 0 1 − p1

i,t

0 p2
i,t 1 − p2

i,t

0 0 1

































(6)
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Xi,t+1|Xi,t ∼ Multinomial
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(7)

1

where Equation (6) and Equation (7) are the observation and the state equations2

respectively. This formulation has similarities with that of Pradel (2005) who used3

hidden-Markov models to extend multistate models to cope with uncertainty in state4

assignment. Again, it should be noted that the state-space formulation allows the de-5

mographic parameters to be distinguished from the nuisance parameters. A similar6

reasoning to that adopted for the CJS model leads to Equations (6) and (7). As ex-7

pected, Equation (6) and Equation (7) reduce to Equation (1) and Equation (2) if one8

considers a single state. Making similar assumptions as in the CJS model leads to the9

population AS SSM.10

3.2 Ring-recovery models11

The capture-recapture models presented above deals with apparent survival, which12

turns out to be true survival if emigration is negligeable. When marks of individuals13

(or individuals themselves) are actually recovered, true survival probabilities can be14

estimated using ring-recovery models (Brownie et al., 1985; RR models hereafter). Let15

Xi,t be the binary random variable taking values 1 if individual i is alive at time t and16

0 if it is dead at time t. Let Yi,t be the binary random variable taking values 1 if mark17

of individual i is recovered at time t and 0 otherwise. The parameters involved in the18

likelihood are φi,t, the probability that an animal i survives to time t + 1 given that19

it is alive at time t (t = 1, . . . , T − 1), and λi,t the probability of recovering the mark20

of individual i at time t (t = 2, . . . , T ). A general state-space formulation of the RR21

10



model is therefore given by:1

Yi,t|Xi,t, Xi,t−1 ∼ Bernoulli ((Xi,t−1 − Xi,t)λi,t) (8)2

Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφi,t) (9)3

where Equation (8) and Equation (9) are the observation and the state equations re-4

spectively. While the state Equation (9) is the same as that in the individual SSM5

CJS, the observation Equation (8) deserves further explanation. If individual i, alive6

at time t, does not survive to time t + 1, then its mark has probability λi,t of being7

recovered and probability 1 − λi,t otherwise, which translates into Yi,t is distributed as8

Bernoulli(λi,t) given Xi,t−1 = 1 and Xi,t = 0 i.e. Xi,t−1 − Xi,t = 1. Now if individual i9

is in a given state (dead or alive) at time t and remains in this state till time t+1, then10

its mark cannot be recovered, which translates into Yi,t is distributed as Bernoulli(0)11

given Xi,t−1 = 0 and Xi,t = 0 or Xi,t−1 = 1 and Xi,t = 1 i.e. Xi,t−1 −Xi,t = 0. The dis-12

tribution of the observation Yi,t conditional on the combination of states Xi,t−1 −Xi,t is13

thus given by Equation (8). Similar comments to that of previous sections can be made14

here as well. Finally, we note that because the probability distribution of the current15

observation does not only depend on the current state variable, the model defined by16

Equation (8) and Equation (9) does not exactly matches the definition of a state-space17

model but can be rewritten as such (see Appendix B).18

4 Discussion19

We have shown that, by separating the demographic process from its observation, CR20

models for estimating survival can be expressed as SSMs. In particular, the SSM21

formulation of the CJS model competes well with the standard method when applied to22

11



a real data set. Bearing this in mind, we see at least two further promising developments1

to our approach.2

First, by scaling down from the population to the individual level while modelling3

the survival probabilities, individual random effects can readily be incorporated to cope4

with heterogeneity in the detection probability (Huggins, 2001) and deal with a frailty in5

the survival probability (Vaupel and Yashin, 1985). Second, the combination of various6

sources of information which has recently received a growing interest, (e.g. recovery7

and recapture data, Catchpole et al., 1998; recovery and census data, Besbeas et al.,8

2002; Besbeas et al., 2003) can now be operated/conducted in a unique SSM framework9

and hence benefits from the corpus of related methods. Of particular importance, we10

are currently investigating the robust detection of density-dependence by accounting11

for error in the measurement of population size using the combination of census data12

and data on marked individuals.13

Because most often, data collected in population dynamics studies give only a noisy14

output of the demographic process under investigation, the SSM framework provides15

a flexible and integrated framework for fitting a wide range of models which, with16

widespread adoption, has the potential to advance significantly ecological statistics17

(Buckland et al., 2004; Thomas et al., 2005).18
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Appendix A: WinBUGS code for fitting the CJS1

model using the SSM formulation2

#############################################################3

# MODEL #4

# State-space formulation of the Cormack-Jolly-Seber model #5

# observations = 0 (non-encountered) and 1 (encountered) #6

# states = 0 (dead) and 1 (alive) #7

#############################################################8

model9

{10

# Define the priors for survival phi and detectability p11

p[1] <- 112

phi[1] <- 113

for (j in 2:K)14

{15

phi[j] ~ dbeta(1,1)16

p[j] ~ dbeta(1,1)17

}18

# Define the SYSTEM PROCESS19

for (i in 1:n)20

{21

# if first capture22

PrX[i,e[i]] <- 1 # Pr(alive | first capture) = 123

X[i,e[i]+1] ~ dbern(PrX[i,e[i]]) # alive (a 1 is generated with certainty)24

17



PrO[i,e[i]] <- X[i,e[i]+1] # detection probability at initial detection is 100%1

# otherwise2

for (j in (e[i]+1):K)3

{4

PrX[i,j] <- phi[j] * X[i,j]5

X[i,j+1] ~ dbern(PrX[i,j])6

PrO[i,j] <- p[j] * X[i,j+1]7

}8

# fullfil the remaining cells with zeros9

for (j in 1:(e[i]-1))10

{11

PrX[i,j] <- 012

X[i,j] <- 113

PrO[i,j] <- 014

}15

}16

# Define the OBSERVATION PROCESS17

for (h in 1:nx)18

{19

data[h,3] ~ dbern(PrO[data[h,1],data[h,2]])20

}21

}22

#######################################################################23

# DATA24

# ’K’ is the number of encounter occasions25

18



# ’n’ is the number of individuals1

# ’nx’ is ’K’ times ’n’2

# ’e’ is the vector of first encounters (’n’ components)3

# ’data’ is a matrix with dimensions ’nx’ times 3 where4

# the first column gives the current individual (1,...,’n’),5

# the second column gives the current encounter occasion (1,...,’K’),6

# the third column gives the observation (= 1 if detection, = 0 otherwise)7

# corresponding to the current individual and current encounter occasion8

#######################################################################9

Appendix B10

Let Zi,t = [Xi,t−1, Xi,t] be a bivariate random vector where its two components are11

denoted Z1
i,t and Z2

i,t. Equation (8) becomes12

Yi,t|Zi,t ∼ Bernoulli
(

(Z1

i,t − Z2

i,t)λi,t

)

(10)13

and Equation (9) becomes14

Zi,t+1|Zi,t =















(

Z1
i,t+1|Zi,t

)

= Z2
i,t

Z2
i,t+1|Zi,t ∼ Bernoulli(Z2

i,tφi,t).
(11)

15

The system defined by Equation (10) and Equation (11) is a state-space model and it16

is equivalent to the model defined by Equation (8) and Equation (9).17

Note that an alternative state-space formulation can be adopted using a multistate18

formulation of the RR model (Lebreton et al., 1999) and Section 3.1.19
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Figure 1: Posterior distributions for the survival and detection probabilities using the
CJS model applied to the Dipper data set as estimated by the state-space model and
MCMC methods.
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Table 1: Estimated survival and detection probabilities for the Dipper data using the
CJS model and three different methods, the state-space model (SSM) using a Monte
Carlo Markov Chain (MCMC) method, the product-multinomial model (PMM) using
a MCMC method and the PMM using a maximum-likelihood (ML) method. The two
first methods were implemented using program WinBUGS (Spiegelhalter et al., 2003),
while program M-SURGE (Choquet et al., 2004) was used to implement the last one.

SSM using MCMC PMM using MCMC PMM using ML
Parameter Posterior median/mode (SD) Posterior median/mode (SD) MLE (SE)

φ1 0.721/0.722 (0.132) 0.723/0.693 (0.132) 0.718 (0.156)
φ2 0.448/0.456 (0.071) 0.448/0.460 (0.071) 0.435 (0.069)
φ3 0.480/0.493 (0.060) 0.480/0.476 (0.061) 0.478 (0.060)
φ4 0.628/0.624 (0.061) 0.627/0.616 (0.060) 0.626 (0.059)
φ5 0.602/0.601 (0.057) 0.602/0.607 (0.057) 0.599 (0.056)
φ6 0.713/0.640 (0.142) 0.720/0.628 (0.143) - (-)∗

p2 0.671/0.658 (0.134) 0.670/0.691 (0.134) 0.696 (0.166)
p3 0.883/0.918 (0.083) 0.883/0.904 (0.083) 0.923 (0.073)
p4 0.888/0.914 (0.063) 0.889/0.912 (0.063) 0.913 (0.058)
p5 0.882/0.885 (0.057) 0.883/0.904 (0.057) 0.901 (0.054)
p6 0.913/0.920 (0.052) 0.912/0.935 (0.051) 0.932 (0.046)
p7 0.735/0.724 (0.142) 0.727/0.648 (0.143) - (-)∗

∗ Non-identifiability detected.
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