STATE-SPACE MODELLING OF DATA ON MARKED INDIVIDUALS

Olivier GIMENEZ1,2,6, Vivien ROSSI3,4,5, Rémi CHOQUET1, Camille DEHAIS1, Blaise DORIS1,3, Hubert VARELLA1,3, Jean-Pierre VILA3 and Roger PRADEL1

1Centre d’Ecologie Fonctionnelle et Evolutive/CNRS - UMR 5175
1919 Route de Mende
34293 Montpellier - FRANCE

2Centre for Research into Ecological and Environmental Modelling
University of St Andrews, St Andrews
The Observatory, Buchanan Gardens, KY16 9LZ - SCOTLAND

3Laboratoire d’Analyse des Systèmes et Biométrie - UMR 729
INRA/ENSAM
2 Place Pierre Viala, 34060 Montpellier - FRANCE

4Institut de Modélisation Mathématiques de Montpellier - UMR 5149
Université Montpellier 2
CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5 - FRANCE

5CIRAD - Unité de dynamique des forêts naturelles
TA C-37 / D
Campus International de Baillarguet, 34349 Montpellier Cedex 5 - FRANCE

6E-mail: olivier.gimenez@cefe.cnrs.fr

Abstract

State-space models have recently been proposed as a convenient and flexible framework for specifying stochastic models for the dynamics of wild animal populations. Here we focus on the modelling of data on marked individuals which
is frequently used in order to estimate demographic parameters while accounting
for imperfect detectability. We show how usual models to deal with capture-
recapture and ring-recovery data can be fruitfully written as state-space models.
An illustration is given using real data and a Bayesian approach using MCMC
methods is implemented to estimate the parameters. Eventually, we discuss fu-
ture developments that may be facilitated by the SSM formulation.

1 Introduction

The estimation of animal survival is essential in population biology to investigate pop-
ulation dynamics, with important applications in the understanding of ecological, evo-
lutionary, conservation and management issues for wild populations (Pollock, 1991;
Williams et al., 2002). While the time to event is known in medical, social or engi-
eering sciences (death, marriage and failure respectively), models for estimating wild
animal survival must incorporate nuisance parameters to account for incomplete de-
tectability in monitoring individuals (Schwarz et Seber, 1999). Typically, individuals
are captured, marked and can be resighted or recaptured (encountered thereafter) to
construct encounter histories which consist of sequences of 1’s and 0’s according to
whether a detection occurs or not. The likelihood for such data arises from products
of multinomial distributions whose cell probabilities are complex functions of survival
probabilities - parameters of primary interest - and encounter probabilities - nuisance

In this note, we show how the population process can be fruitfully disentangled,
by distinguishing the underlying demographic process, i.e. the survival (as well as
transitions between sites/states if needed), from its observation, i.e. the detectability.
This leads us to consider a natural formulation for capture-recapture models using state-
space models (SSMs). Our contribution is in line with a recent paper by Buckland et al. (2004) who have proposed to adopt SSMs as a convenient and flexible framework for specifying stochastic models for the dynamics of wild animal populations.

Thus far, SSMs have been mainly used for time series of animal counts (de Valpine, 2004; Millar and Meyer, 2000) or animal locations (Anderson-Sprecher and Ledolter, 1991) to allow true but unobservable states (the population size or trajectory) to be inferred from observed but noisy data (see Clark et al., 2005 and Wang, 2006 for reviews). The novelty of our approach lies in the use of SSMs to fit capture-recapture models to encounter histories.

In Section 2, we discuss how to express the CJS model under the form of a SSM. The implementation details are provided, and real data are presented to compare parameter estimates as obtained using the standard product-multinomial and the SSM approaches. In Section 3, the flexibility of the state-space modeling approach is demonstrated by considering two widely used alternative schemes for collecting data on marked animals. Finally, Section 4 discusses important developments of capture-recapture models facilitated by the SSM formulation. We emphasize that this general framework has a great potential in population ecology modelling.

2 State-space modelling of capture-recapture data

We focus here on the CJS model for estimating animal survival based on capture-recapture data, as this model is widely used in the ecological and evolutionary literature (e.g. Lebreton et al., 1992).
2.1 Likelihood

We first define the observations and then the states of the system. We assume that \(n \) individuals are involved in the study with \(T \) encounter occasions. Let \(X_{i,t} \) be the binary random variable taking values 1 if individual \(i \) is alive at time \(t \) and 0 if it is dead at time \(t \). Let \(Y_{i,t} \) be the binary random variable taking values 1 if individual \(i \) is encountered at time \(t \) and 0 otherwise. Note that we consider the encounter event as being physically captured or barely observed. The parameters involved in the likelihood are \(\phi_{i,t} \), the probability that an animal \(i \) survives to time \(t + 1 \) given that it is alive at time \(t \) (\(t = 1, \ldots, T - 1 \)), and \(p_{i,t} \) the probability of detecting individual \(i \) at time \(t \) (\(t = 2, \ldots, T \)). Let finally \(e_i \) be the occasion where individual \(i \) is encountered for the first time. A general state-space formulation of the CJS model is therefore given by:

\[
Y_{i,t} | X_{i,t} \sim \text{Bernoulli}(X_{i,t} p_{i,t}), \quad (1)
\]

\[
X_{i,t+1} | X_{i,t} \sim \text{Bernoulli}(X_{i,t} \phi_{i,t}), \quad (2)
\]

for \(t \geq e_i \), with \(p_{i,e_i} = 1 \) and where Equation (1) and Equation (2) are the observation and the state equations respectively. This formulation naturally separates the nuisance parameters (the encounter probabilities) from the parameters of actual interest i.e. the survival probabilities, the latter being involved exclusively in the state Equation (2).

Such a clear distinction between a demographic process and its observation makes the description of a biological dynamic system much simpler and allows complex models to be fitted (Pradel, 2005; Clark et al., 2005). We will refer to this formulation as the individual state-space CJS model (individual SSM CJS hereafter). The rationale behind the above formulation is as follows. We give the full details for the observation Equation (1) only, as a similar reasoning easily leads to Equation (2). If individual \(i \) is
alive at time t, then it has probability $p_{i,t}$ of being encountered and probability $1 - p_{i,t}$ otherwise, which translates into $Y_{i,t}$ is distributed as $Bernoulli(p_{i,t})$ given $X_{i,t} = 1$. Now if individual i is dead at time t, then it cannot be encountered, which translates into $Y_{i,t}$ is distributed as $Bernoulli(0)$ given $X_{i,t} = 0$. Putting together those two pieces of reasoning, the distribution of the observation $Y_{i,t}$ conditional on the state $X_{i,t}$ is given by Equation (1).

Statistical inference then requires the likelihood of the state-space model specified above. Assuming independence of individuals, the likelihood is given by the product of all individual likelihood components. The likelihood component for individual i is the probability of the vector of observations $Y_i^T = (Y_{i,e_i}, \ldots, Y_{i,T})$ which gathers the information set up to time T for this particular individual. Conditional on the first detection, the likelihood component corresponding to individual i is therefore given by (e.g. Harvey, 1989)

$$
\int_{X_{i,e_i}} \cdots \int_{X_{i,T}} [X_{i,e_i}] \left\{ \prod_{t=e_i+1}^{T} \left[Y_{i,t} | X_{i,t} \right] \left[X_{i,t} | X_{i,t-1} \right] \right\} dX_{i,e_i} \cdots dX_{i,T} \quad (3)
$$

where $[X]$ denotes the distribution of X and X_{i,e_i} the initial state of individual i which is assumed to be alive. Because we deal with binary random vectors, we used the counting measure instead of the Lebesgue measure.

In its original formulation, the CJS makes important assumptions regarding individuals. First, all individuals share the same parameters, which means that the survival and detection probabilities depend on the time index only. In mathematical notation, we have $\phi_{i,t} = \phi_t$ and $p_{i,t} = p_t$ for all $i = 1, \ldots, n$, so Equation (1) and Equation (2) become $X_{i,t+1} | X_{i,t} \sim Bernoulli(X_{i,t}\phi_t)$ and $Y_{i,t} | X_{i,t} \sim Bernoulli(X_{i,t}p_t)$ respectively. Second, the CJS model also assumes independence between individuals. By using sim-
ple relationships between Bernoulli and Binomial distributions, one can finally fruitfully formulates the original CJS model under the following state-space model:

\[Y_t | X_t \sim Bin(X_t - u_t, p_t) \] \hspace{1cm} (4)

\[X_{t+1} | X_t \sim Bin(X_t, \phi_t) + u_{t+1} \] \hspace{1cm} (5)

where \(X_t \) is the number of survivors from time \(t \) plus the number of newly marked individuals at time \(t \), \(u_t \), and \(Y_t \) is the total number of previously marked individuals encountered at time \(t \). We will refer to this formulation as the population state-space CJS model (population SSM CJS hereafter). Interestingly, specifying the system under a state-space formulation now requires much less equations than the individual SSM CJS model, which may avoid the computational burden. Nevertheless, while the individual SSM CJS involves parameters for every single individual and sampling occasion, the population SSM CJS model makes the strong assumptions that all individuals behave the same as well as independently, which may be of little relevance from the biological point of view. To cope with this issue, in-between modelling can be achieved by considering age effects or groups classes in the population SSM model (Lebreton et al., 1992). Finally, covariates can be incorporated in order to assess the effect of environment such as climate change, most conveniently by writing the relationship between the target probabilities and the predictors on the logit scale (Pollock, 2002).

2.2 Implementation

Fitting SSMs is complicated due to the high-dimensional integral involved in the individual likelihood Equation (3). To circumvent this issue, several techniques have been proposed including Kalman filtering, Monte-Carlo particle filtering (such as sequential
importance sampling) and MCMC (see Clark et al., 2005 and Wang, 2006 for reviews).

Our objective here is not to discuss these different methods. For our purpose, we adopt
the MCMC technique which is now widely used in biology (Ellison, 2004; Clark, 2005),
in particular for estimating animal survival (Seber et Schwarz, 1999; Brooks et al.,
2000). Besides, this is to our knowledge the only methodology which comes with an
efficient and flexible program to implement it, which, in our case, will allow biologists
to easily and rapidly adopt our approach.

In addition to the difficulty of estimating model parameters, the use of SSMs raises
several important issues regarding identifiability, model selection and goodness-of-fit
(Buckland et al. 2004) that were not discussed here. Noteworthy, Bayesian modelling
using MCMC methods offer possible solutions reviewed in Gimenez et al. (submitted).

2.3 Illustration

We consider capture-recapture data on the European dipper (*Cinclus cinclus*) that were
collected between 1981 and 1987 (Lebreton et al., 1992). The data consists of marking
and recaptures of 294 birds ringed as adults in eastern France. We applied standard
maximum-likelihood estimation (Lebreton et al. 1992) and MCMC techniques (Brooks
et al. 2000) using the product-multinomial likelihood and the state-space likelihood of
Equation (3) in combination with Equation (1) and Equation (2). We ran two overdis-
persed parallel MCMC chains to check whether convergence was reached (Gelman,
1996). We used 10,000 iterations with 5,000 burned iterations for posterior summariza-
tion. We used uniform flat priors for both survival and detection probabilities. The
simulations were performed using WinBUGS (Spiegelhalter et al., 2003). The R (Ihaka
and Gentleman, 1996) package R2WinBUGS (Sturtz et al., 2005) was used to call Win-
BUGS and export results in R. This was especially helpful when converting the raw
encounter histories into the appropriate format, generating initial values and calculate posterior modes. The programs are available in Appendix A. Posterior summaries for encounter and survival probabilities are given in Table 1, along with their posterior probability distributions that are displayed in Figure 1.

[Table 1 about here.]

[Figure 1 about here.]

Survival estimates were uniformly similar whatever the method used (Table 1). In particular, there is a clear decrease in survival 1982-1983 and 1983-1984, corresponding to a major flood during the breeding season in 1983 (Lebreton et al., 1992).

In contrast, posterior medians of detection probabilities using the CJS SSM approach are quite different from the classical maximum likelihood estimates, but more similar to the posterior medians obtained with the product-multinomial likelihood approach (Table 1). These discrepancies are no longer present when posterior modes are examined, as expected (recall that we use non-informative uniform distributions as priors for all parameters).

The last survival probability as well as the last detection probability are estimated with high variability (Table 1 and Figure 1). The fact that these two parameters cannot be separately estimated is not surprising since the CJS model is known to be parameter-redundant (Catchpole and Morgan, 1997). Also, the first survival probability and the first detection probability are poorly estimated, due to the fact that very few individuals were marked at the first sampling occasion (approximately 7% of the full data set).

In terms of time computation, the MCMC approach using a product-multinomial likelihood took 30 seconds to run and a few second for the classical approach, while
the MCMC approach using the SSM likelihood took 4 minutes (512Mo RAM, 2.6GHz CPU).

3 Further state-space modelling

3.1 Multistate capture-recapture models

Multistate capture-recapture models (Arnason, 1973; Schwarz et al., 1993; AS hereafter) are a natural generalization of the CJS model in that individuals can move between states, according to probabilities of transition between those states. States can be either geographical sites or states of categorical variables like reproductive status or size class (Lebreton and Pradel, 2002). We provide here a state-space modelling formulation of the AS model (Dupuis, 1995; Newman, 1998; Clark et al., 2005). Without loss of generality, we consider 2 states. Let $X_{i,t}$ be the random state vector taking values $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ if, at time t, individual i is alive in state 1, 2 or dead respectively. Let $Y_{i,t}$ be the random observation vector taking values $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$ if, at time t, individual i is encountered in state 1, 2 or not encountered. Parameters involved in the modelling include $\phi_{i,t}^{rs}$, the probability that an animal i survives to time $t+1$ given that it is alive at time t ($t = 1, \ldots, T-1$) and makes the transition between state r and state s over the same interval ($r, s = 1, 2$), as well as $p_{i,t}^r$ the probability of detecting individual i at time t in state r ($t = 2, \ldots, T, r = 1, 2$). A state-space formulation for the multistate AS model is given by:

$$Y_{i,t}|X_{i,t} \sim \text{Multinomial} \begin{pmatrix} 1, X_{i,t} \end{pmatrix} \begin{pmatrix} p_{i,t}^1 0 1-p_{i,t}^1 \\ 0 p_{i,t}^2 1-p_{i,t}^2 \\ 0 0 1 \end{pmatrix}$$ (6)
\[
X_{i,t+1}|X_{i,t} \sim \text{Multinomial} \left(1, X_{i,t}, \begin{bmatrix}
\phi_{i,t}^{11} & \phi_{i,t}^{12} & 1 - \phi_{i,t}^{11} - \phi_{i,t}^{12} \\
\phi_{i,t}^{21} & \phi_{i,t}^{22} & 1 - \phi_{i,t}^{21} - \phi_{i,t}^{22} \\
0 & 0 & 1
\end{bmatrix} \right)
\]

where Equation (6) and Equation (7) are the observation and the state equations respectively. This formulation has similarities with that of Pradel (2005) who used hidden-Markov models to extend multistate models to cope with uncertainty in state assignment. Again, it should be noted that the state-space formulation allows the demographic parameters to be distinguished from the nuisance parameters. A similar reasoning to that adopted for the CJS model leads to Equations (6) and (7). As expected, Equation (6) and Equation (7) reduce to Equation (1) and Equation (2) if one considers a single state. Making similar assumptions as in the CJS model leads to the population AS SSM.

3.2 Ring-recovery models

The capture-recapture models presented above deals with apparent survival, which turns out to be true survival if emigration is negligible. When marks of individuals (or individuals themselves) are actually recovered, true survival probabilities can be estimated using ring-recovery models (Brownie et al., 1985; RR models hereafter). Let \(X_{i,t} \) be the binary random variable taking values 1 if individual \(i \) is alive at time \(t \) and 0 if it is dead at time \(t \). Let \(Y_{i,t} \) be the binary random variable taking values 1 if mark of individual \(i \) is recovered at time \(t \) and 0 otherwise. The parameters involved in the likelihood are \(\phi_{i,t} \), the probability that an animal \(i \) survives to time \(t + 1 \) given that it is alive at time \(t \) \((t = 1, \ldots, T - 1)\), and \(\lambda_{i,t} \) the probability of recovering the mark of individual \(i \) at time \(t \) \((t = 2, \ldots, T)\). A general state-space formulation of the RR
model is therefore given by:

\[Y_{i,t} | X_{i,t}, X_{i,t-1} \sim Bernoulli((X_{i,t-1} - X_{i,t})\lambda_{i,t}) \] (8)

\[X_{i,t+1} | X_{i,t} \sim Bernoulli(X_{i,t}\phi_{i,t}) \] (9)

where Equation (8) and Equation (9) are the observation and the state equations respectively. While the state Equation (9) is the same as that in the individual SSM CJS, the observation Equation (8) deserves further explanation. If individual \(i \), alive at time \(t \), does not survive to time \(t + 1 \), then its mark has probability \(\lambda_{i,t} \) of being recovered and probability \(1 - \lambda_{i,t} \) otherwise, which translates into \(Y_{i,t} \) is distributed as \(Bernoulli(\lambda_{i,t}) \) given \(X_{i,t-1} = 1 \) and \(X_{i,t} = 0 \) i.e. \(X_{i,t-1} - X_{i,t} = 1 \). Now if individual \(i \) is in a given state (dead or alive) at time \(t \) and remains in this state till time \(t + 1 \), then its mark cannot be recovered, which translates into \(Y_{i,t} \) is distributed as \(Bernoulli(0) \) given \(X_{i,t-1} = 0 \) and \(X_{i,t} = 0 \) or \(X_{i,t-1} = 1 \) and \(X_{i,t} = 1 \) i.e. \(X_{i,t-1} - X_{i,t} = 0 \). The distribution of the observation \(Y_{i,t} \) conditional on the combination of states \(X_{i,t-1} - X_{i,t} \) is thus given by Equation (8). Similar comments to that of previous sections can be made here as well. Finally, we note that because the probability distribution of the current observation does not only depend on the current state variable, the model defined by Equation (8) and Equation (9) does not exactly matches the definition of a state-space model but can be rewritten as such (see Appendix B).

4 Discussion

We have shown that, by separating the demographic process from its observation, CR models for estimating survival can be expressed as SSMs. In particular, the SSM formulation of the CJS model competes well with the standard method when applied to
a real data set. Bearing this in mind, we see at least two further promising developments to our approach.

First, by scaling down from the population to the individual level while modelling the survival probabilities, individual random effects can readily be incorporated to cope with heterogeneity in the detection probability (Huggins, 2001) and deal with a frailty in the survival probability (Vaupel and Yashin, 1985). Second, the combination of various sources of information which has recently received a growing interest, (e.g. recovery and recapture data, Catchpole et al., 1998; recovery and census data, Besbeas et al., 2002; Besbeas et al., 2003) can now be operated/conducted in a unique SSM framework and hence benefits from the corpus of related methods. Of particular importance, we are currently investigating the robust detection of density-dependence by accounting for error in the measurement of population size using the combination of census data and data on marked individuals.

Because most often, data collected in population dynamics studies give only a noisy output of the demographic process under investigation, the SSM framework provides a flexible and integrated framework for fitting a wide range of models which, with widespread adoption, has the potential to advance significantly ecological statistics (Buckland et al., 2004; Thomas et al., 2005).
5 Acknowledgments

O. Gimenez’s research was supported by a Marie-Curie Intra-European Fellowship within the Sixth European Community Framework Programme. This project was funded by the Action Incitative Régionale BioSTIC-LR 'Modélisation intégrée en dynamique des populations : applications à la gestion et à la conservation’. The authors would like to warmly thank J.-D. Lebreton for his support during this project. We also thank a referee whose comments help improving a previous draft of the paper.

6 Literature Cited

Chapman and Hall, London.

Appendix A: WinBUGS code for fitting the CJS model using the SSM formulation

###
MODEL
State-space formulation of the Cormack-Jolly-Seber model
observations = 0 (non-encountered) and 1 (encountered)
states = 0 (dead) and 1 (alive)
###
model
{
 # Define the priors for survival phi and detectability p
 p[1] <- 1
 phi[1] <- 1
 for (j in 2:K)
 {
 phi[j] ~ dbeta(1,1)
 p[j] ~ dbeta(1,1)
 }
 # Define the SYSTEM PROCESS
 for (i in 1:n)
 {
 # if first capture
 PrX[i,e[i]] <- 1 # Pr(alive | first capture) = 1
 X[i,e[i]+1] ~ dbern(PrX[i,e[i]]) # alive (a 1 is generated with certainty)
PrO[i, e[i]] <- X[i, e[i]+1] # detection probability at initial detection is 100%
otherwise
for (j in (e[i]+1):K)
{
PrX[i, j] <- phi[j] * X[i, j]
X[i, j+1] ~ dbern(PrX[i, j])
PrO[i, j] <- p[j] * X[i, j+1]
}
fullfill the remaining cells with zeros
for (j in 1:(e[i]-1))
{
PrX[i, j] <- 0
X[i, j] <- 1
PrO[i, j] <- 0
}

Define the OBSERVATION PROCESS
for (h in 1:nx)
{
data[h, 3] ~ dbern(PrO[data[h, 1], data[h, 2]])
}

DATA
'K' is the number of encounter occasions
Appendix B

Let \(Z_{i,t} = [X_{i,t-1}, X_{i,t}] \) be a bivariate random vector where its two components are denoted \(Z_{i,t}^1 \) and \(Z_{i,t}^2 \). Equation (8) becomes

\[
Y_{i,t} | Z_{i,t} \sim Bernoulli \left((Z_{i,t}^1 - Z_{i,t}^2) \lambda_{i,t} \right)
\] (10)

and Equation (9) becomes

\[
Z_{i,t+1} | Z_{i,t} = \begin{cases}
Z_{i,t+1}^1 | Z_{i,t} = Z_{i,t}^1 \\
Z_{i,t+1}^2 | Z_{i,t} \sim Bernoulli(Z_{i,t}^2 \phi_{i,t}).
\end{cases}
\] (11)

The system defined by Equation (10) and Equation (11) is a state-space model and it is equivalent to the model defined by Equation (8) and Equation (9).

Note that an alternative state-space formulation can be adopted using a multistate formulation of the RR model (Lebreton et al., 1999) and Section 3.1.
Figure 1: Posterior distributions for the survival and detection probabilities using the CJS model applied to the Dipper data set as estimated by the state-space model and MCMC methods.
Table 1: Estimated survival and detection probabilities for the Dipper data using the CJS model and three different methods, the state-space model (SSM) using a Monte Carlo Markov Chain (MCMC) method, the product-multinomial model (PMM) using a MCMC method and the PMM using a maximum-likelihood (ML) method. The two first methods were implemented using program WinBUGS (Spiegelhalter et al., 2003), while program M-SURGE (Choquet et al., 2004) was used to implement the last one.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SSM using MCMC</th>
<th>PMM using MCMC</th>
<th>PMM using ML</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Posterior median/mode (SD)</td>
<td>Posterior median/mode (SD)</td>
<td>MLE (SE)</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>0.721/0.722 (0.132)</td>
<td>0.723/0.693 (0.132)</td>
<td>0.718 (0.156)</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>0.448/0.456 (0.071)</td>
<td>0.448/0.460 (0.071)</td>
<td>0.435 (0.069)</td>
</tr>
<tr>
<td>ϕ_3</td>
<td>0.480/0.493 (0.060)</td>
<td>0.480/0.476 (0.061)</td>
<td>0.478 (0.060)</td>
</tr>
<tr>
<td>ϕ_4</td>
<td>0.628/0.624 (0.061)</td>
<td>0.627/0.616 (0.060)</td>
<td>0.626 (0.059)</td>
</tr>
<tr>
<td>ϕ_5</td>
<td>0.602/0.601 (0.057)</td>
<td>0.602/0.607 (0.057)</td>
<td>0.599 (0.056)</td>
</tr>
<tr>
<td>ϕ_6</td>
<td>0.713/0.640 (0.142)</td>
<td>0.720/0.628 (0.143)</td>
<td>- (-)*</td>
</tr>
<tr>
<td>p_2</td>
<td>0.671/0.658 (0.134)</td>
<td>0.670/0.691 (0.134)</td>
<td>0.696 (0.166)</td>
</tr>
<tr>
<td>p_3</td>
<td>0.883/0.918 (0.083)</td>
<td>0.883/0.904 (0.083)</td>
<td>0.923 (0.073)</td>
</tr>
<tr>
<td>p_4</td>
<td>0.888/0.914 (0.063)</td>
<td>0.889/0.912 (0.063)</td>
<td>0.913 (0.058)</td>
</tr>
<tr>
<td>p_5</td>
<td>0.882/0.885 (0.057)</td>
<td>0.883/0.904 (0.057)</td>
<td>0.901 (0.054)</td>
</tr>
<tr>
<td>p_6</td>
<td>0.913/0.920 (0.052)</td>
<td>0.912/0.935 (0.051)</td>
<td>0.932 (0.046)</td>
</tr>
<tr>
<td>p_7</td>
<td>0.735/0.724 (0.142)</td>
<td>0.727/0.648 (0.143)</td>
<td>- (-)*</td>
</tr>
</tbody>
</table>

* Non-identifiability detected.