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Abstract

Synthetic aperture radar (SAR) is one of the most promising remote sen-

sors to map forest carbon. The unique spaceborne and long- wavelength SAR

data currently available are L-band data, but their relationship with forest

biomass is still controversial, particularly for high biomass values. While

many studies assume a complete loss of sensitivity above a saturation point,

typically around 100 t.ha−1, others assume a continuous positive correla-

tion between SAR backscatter and biomass. The objective of this paper

is to revisit the relationship between L-band SAR backscatter and dense

tropical forest biomass for a large range of biomass values using both the-

oretical and experimental approaches. Both approaches revealed that after

reaching a maximum value, SAR backscatter correlates negatively with for-

est biomass. This phenomenon is interpreted as a signal attenuation from

the forest canopy as the canopy becomes denser. This result has strong
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implications for L-band vegetation mapping because it can lead to a greater-

than-expected under-estimation of biomass. The consequences for L-band

biomass mapping are illustrated, and solutions are proposed.

Keywords: Tropical forest, Carbon mapping, ALOS PALSAR.

1. Introduction1

Forests act as both carbon sources and sinks through deforestation, degra-2

dation (Harris et al., 2012) and regrowth (Lewis et al., 2009). The monitoring3

of forest carbon stocks is a pressing concern to quantify the exchange of car-4

bon between the surface and the atmosphere and therefore to reduce the5

uncertainty in the global carbon budget. Our knowledge of the distribution6

and amount of forest carbon is mostly based on ground measurements with7

relatively small field plots, which are not necessarily representative of their8

surrounding areas (Réjou-Méchain et al., 2014) and not uniformly distributed9

over forested areas and biomes (Gibbs et al., 2007; Houghton et al., 2009).10

Thus, most estimates of emissions from deforestation are based on a handful11

of biome-average datasets where a single representative value of forest car-12

bon per unit area is applied to broad forest categories or biomes (Fearnside,13

2000; Houghton, 1999; DeFries et al., 2002; Achard et al., 2002, 2004; Ra-14

mankutty et al., 2007). Such approaches have led to strong inconstancies15

between studies.16

Remote sensing approaches offer considerable potential in support of for-17

est monitoring as they provide long-term and repetitive observations over18

large areas. Standard optical data, such as provided by Landsat, are not19

sensitive to AGB beyond the canopy closure. However, using very high reso-20
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lution optical data, the canopy texture can be characterised and then used to21

infer the above ground biomass (AGB) based on, for example, the Fourier-22

FOTO algorithm (Couteron, 2002; Couteron et al., 2005). A few studies have23

successfully used such an approach to map AGB in high biomass areas, such24

as Proisy et al. (2007) in two mangroves areas in French Guiana, Ploton et al.25

(2012) in a wet evergreen forest in India and Bastin et al. (In press) in a moist26

forest area in the Democratic Republic of the Congo. These three studies27

showed that AGB can be retrieved with no signal saturation and with a rel-28

ative error ranging from 15 to 17%. However, these studies are performed at29

local scale and are limited to the small imaging swaths (maximum of 15×1530

km). The large scale application of the methods is limited by the data cost31

and the temporal consistency of data due to cloud cover.32

At the landscape scale, airborne LiDAR data-based approaches have33

proven to be accurate enough to infer the canopy height and structure, and34

thus to map the forest AGB at a high spatial resolution. In a recent meta-35

analysis, Zolkos et al. (2013) showed that the AGB can be retrieved with an36

error of 10% if the calibration is done using 1-ha plots. However, the cost37

of airborne LiDAR campaigns limits its use for large regions (however, see38

Mascaro et al. (2014)), and airborne campaigns are not feasible throughout39

the tropics for logistical and political reasons. Meanwhile, spaceborne Li-40

DAR data are currently limited by discontinuous coverage and clouds (Lef-41

sky et al., 2005; Baghdadi et al., 2013), and the derived large scale AGB42

products have low spatial resolution (1 km in Saatchi et al. (2011) and 50043

m in Baccini et al. (2012)). In a recent contribution, Mitchard et al. (2013)44

used a large network of field plots in Amazonia to show that the uncertainties45
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of Saatchi and Baccini’s maps were far larger than expected, with over- and46

under-estimations greater than 25%.47

Synthetic aperture radar (SAR) is one of the most promising remote48

sensors to map the global forest AGB. Many studies have shown that long-49

wavelength radar data are sensitive to AGB. Research efforts based on air-50

borne data and/or electromagnetic (EM) modelling have demonstrated that51

P-band data may be used for a larger range of AGB values than L-band data52

and thus should be privileged in forests with high biomass density (Le Toan53

et al., 1992). The first P-band SAR satellite, BIOMASS, will be launched54

approximately 2020 and will provide multi-temporal global forest AGB maps55

(Le Toan et al., 2011; ESA, 2012). Currently, the L-band ALOS PALSAR56

data acquired up to 2011 can be used to estimate the forest AGB, as well as57

its sequel, ALOS-2, launched in May 2014.58

The L-band has been extensively used to estimate forest AGB (Santos59

et al., 2002; Santoro, 2003; Saatchi et al., 2011; Cartus et al., 2012; Carreiras60

et al., 2013), based on a positive correlation between SAR backscatter and61

in situ AGB. However, contrasting results have been yielded concerning the62

range of biomass that can be retrieved. Literature results suggest that there63

is an AGB level above which there is a loss of sensitivity between the L-64

band backscatter and AGB (Imhoff, 1995), commonly called the saturation65

phenomenon. The saturation level using HV polarization has been found to66

range between 40 and 150 t.ha−1 (Dobson et al., 1992; Le Toan et al., 2004;67

Saatchi et al., 2007; Sandberg et al., 2011), reaching in some studies more68

than 250 t.ha−1 (Hoekman and Quiriones, 2000; Lucas et al., 2010).69

Questions can arise about the relationship between L-band backscatter70
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and forest AGB beyond the saturation region. Many studies used a sigmoid71

function to describe the relationship between radar backscatter and AGB72

(Mitchard et al., 2011; Mermoz et al., 2014) to represent the ’saturation’ be-73

haviour. Some studies suggested that the sensitivity to AGB can be observed74

up to 400 t.ha−1 (Shugart et al., 2010; Morel et al., 2011; Hamdan et al.,75

2011; Englhart et al., 2011) and even 1000 t.ha−1 (Viergever, 2008; Mitchard76

et al., 2009). This finding is attributable to the use of a logarithmic (i.e.,77

non-asymptotic) function to fit the experimental data, even though the pos-78

itive correlation between SAR backscatter and AGB is usually not observed79

after 150-200 t.ha−1. In addition to modelling results based on EM simula-80

tions (Villard, 2009), one study reported a decreasing trend after 200 t.ha−1
81

(Lucas et al., 2007) over dense mangrove forests in Australia, French Guyana82

and Malaysia, as well as another recent study over a forest-savanna mosaic83

in Cameroon (Mermoz et al., 2014). When retrieving AGB, the choice of the84

function describing the relationship between radar backscatter and AGB is85

crucial in the higher AGB range (i.e., > 100-150 t.ha−1) because it can lead86

to serious over- or under-estimation.87

The objective of this paper is to revisit the relationship between L-band88

SAR backscatter and forest biomass for a large range of AGB values using89

both theoretical and experimental approaches. The focus is put on the high90

biomass range, for which the predicted AGB values may vary substantially91

between studies. The emphasis is on the tropical forests for which the carbon92

stocks and spatial distribution of carbon are poorly known despite contain-93

ing 40 to 50 % of the land terrestrial carbon stocks. The following section94

introduces the theoretical approach. Section 3 provides informations on the95
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study site and the field and SAR data. Section 4 describes the experimental96

approach, and section 5 discusses the results.97

2. Theoretical Approach98

2.1. Electromagnetic modelling to simulate forest backscatter at L-band99

We aimed to model the backscatter at L-band from dense canpy forests as100

a function of AGB to investigate and physically explain their relationship. In101

this work, it is not intended that the dense canopy simulated by the model102

represents in detail the forest observed experimentally. Simulations were103

achieved from a discrete description of the forest canopy, using canonical104

shapes such as cylinders for the scatterers (Figure 1).105

Figure 1: Illustration of the two-layered forest model. Vegetation scatterers are modelled

by dielectric cylinders with various height and radius and are gathered into two horizontal

layers. h is the total tree height, ht is the trunk height and hc is the crown height.
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The vegetation scatterers are modelled by four classes of dielectric cylin-106

ders with varying height and radius and gathered into horizontal layers ac-107

cording to the spatial statistical distribution of their classes. Each of the four108

classes of cylinders are defined by the Gaussian distributions of their height109

and radius and by specific distributions for the Euler angles driving their 3D110

orientation. Following a Monte-Carlo process, these geometrical parameters111

are drawn for each cylinder to compute their scattering contribution. On112

the contrary, the mean extinction coefficient associated with each layer is an113

averaged (integral) expression according to the Foldy-Lax formulation (Ishi-114

maru, 1978). Following the Distorted Born Wave Approximation, the total115

backscatter is deduced from the coherent sum (preserving the geometric and116

proper phase) of each scatterer contribution. The most important scatter-117

ing mechanisms arise from direct contributions from scatterers belonging to118

the vegetation layers and the ground and from their coupling through the119

so-called double bounce scattering mechanism. These simulations were run120

through the MIPERS (Multistatic Interferometric Polarimetric ElectroMag-121

netic) model (Villard, 2009).122

The geometrical parameters describing the modelled forest, required by123

the EM simulations, need to be derived. A forest growth model has been124

developed to deduce all the geometrical parameters from a chosen AGB,125

ranging from 50 to 450 t.ha−1 with 50 t.ha−1 steps. Based on the allometric126

relationships, the main steps of the forest growth model have been synthe-127

sized in Figure 2 and detailed in Appendix A. Because our field dataset128

(see section 3.2) lacked tree height measurements, we selected allometric re-129

lationships from the literature. We chose the allometric relationships given130
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in Asner et al. (2012) based on 130 tropical forest field plots of 0.28 ha from131

Peru. The study from Asner et al. (2012) is of greatest interest for our pur-132

pose because it involves LiDAR mean canopy height (MCH), which fits the133

heights of our layered forest model better than tree height, which is more134

common in forest ecology. The allometric equations in Asner et al. (2012)135

were also detailed enough (including the relationship between tree height and136

biomass, between diameter and tree height and between basal area and tree137

height) to derive the inputs of the EM model.138

Figure 2: The forest growth model for deriving all the geometrical parameters required

for the electromagnetic (EM) calculations. Equations (1), (2) and (3) relate mean canopy

height (MCH) and above ground biomass (AGB), diameter at breast height (DBH) and

MCH, and basal area (BA) and h, respectively

It is important to note that this approach targets a tropical type of forest139

but could be valid for various types of forests with dense canopy and radar140

frequencies, though some specific parameterizations would be required.141
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2.2. Results and Discussion142

The resulting backscatter coefficient at HV polarization is plotted in green143

as a function of AGB in Figure 3. We can observe the increasing log shape144

followed by a slightly linear decrease after the highest value of backscatter145

(the decrease in magnitude is 0.9 dB between AGB from 230 t.ha−1 to 450146

t.ha−1). To better understand the causes of the backscatter decrease, the147

backscatter coefficient at HV polarization is also derived by neglecting the148

attenuation from the vegetation. The so-called free-space (or no attenuation)149

backscatter is plotted in cyan in Figure 3, whereas the total attenuation, ac-150

counting for the signal loss (in dB) due to the wave propagation forth and151

back, is plotted at horizontal (red) and vertical (blue) polarizations. The152

decreasing backscatter plotted in green results from the saturation of the153

no-attenuation backscatter (the backscatter does not increase anymore with154

the number of scatterers and saturates), while the attenuation still increases155

with forest AGB. These simulations demonstrate that the antagonistic be-156

haviours of no-attenuation backscatter and attenuation explain the negative157

correlation between L-band backscatter and high forest AGB.158

The sensitivity of backscatter to AGB was found to be weak after the159

highest value of backscatter. To experimentally observe the decreasing trend160

of the backscatter, the analyses require reducing as much as possible the161

perturbing factors effects, which are related to the forest structure and en-162

vironment, to the uncertainties in the radar data and in situ AGB data and163

to the misalignment in the locations of the radar and in situ observation164

geometries.165
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Figure 3: (Left axis) Simulated HV backscatters versus AGB, plotted in green (with

attenuation from the vegetation) and cyan (without attenuation from the vegetation).

(Right axis) Simulated attenuations, accounting for the signal loss (in dB) due to the

wave propagation forth and back, at horizontal (red) and vertical (blue) polarizations.

The uncertainties related to wood density (mean value of 0.58 g/cm3) are represented by

the filled colour domains surrounding the curves.

3. DATA166

3.1. Study area167

The study area shown in Figure 4 covers 8,300 km2 in the southwestern168

Central African Republic (CAR), from 3o26N to 4o36N and from 15o08E to169

17o48E. The climate is tropical humid with a mean annual rainfall of 1300-170

1600 mm (Hijmans et al., 2005). The altitude ranges from approximately171

400 to 800 m (Boulvert, 1987). Our study area is mostly covered with semi-172
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evergreen rain forests from the Guineo-Congolian region with locally flooded173

or swamp forests, savannas located north of the Congo basin and forest-174

enclosed savannas.175

Figure 4: Map of the Central African Republic showing in grey the location of the forest

concessions targeted for the study.

3.2. Field data176

3.2.1. Description of field data177

The forestry data were extracted from commercial forest inventories con-178

ducted by four logging companies: IFB (Industrie Forestière de Batalimo)179

in 1993-1996, SCAF (Société CentrAfricaine Forestière), SOFOKAD (Société180

Forestière de la Kadéi) and TCA (Thanry CentrAfrique) in 2005-2006. These181
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companies benefited from financial and technical support from the French-182

funded programs ECOFAC (IFB) and PARPAF (SCAF, SOFOKAD, and183

TCA), which considerably increased the quality of the data collected. The184

four companies followed the same standardized inventory protocol fully de-185

scribed in Réjou-Méchain et al. (2011). This protocol consisted of continuous186

transects 25-m wide and 2 to 3 km apart and subdivided into rectangular187

25-m wide by 200-m long (i.e., 0.5-ha) field plots. In the northwestern area188

of the IFB concession, the plots were non-adjacent but the transects were189

closer (i.e., with a similar sampling intensity). Overall, 19,584 plots were190

inventoried by the four companies.191

Trees with a diameter at breast height (DBH) ≥ 30 cm were recorded192

within each 0.5-ha field plot, while those between 10 and 30 cm DBH were193

recorded on a 0.1 (IFB) or 0.125 ha sub-plot area. The trees were allocated194

into 10-cm wide DBH classes. All the trees were identified whenever possible195

to the species level through either commercial or local names and then con-196

verted into scientific names. Such a protocol proved devoid of major bias in197

the identification of floristic patterns compared to extensive botanical con-198

trols (Réjou-Méchain et al., 2011). Overall, 2,401,016 trees were recorded199

and the taxonomy was revised and homogenized using the African Flowering200

Plants Database and the Angiosperm Phylogeny Group III for orders and201

families (Bremer et al., 2009).202

3.2.2. Field AGB estimation203

The successive steps for AGB calculation are summarised in Figure 5204

and fully described in Appendix B. Because the trees were allocated into205

diameter classes during the inventories, we first modelled the diameter dis-206
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tribution of the trees using a truncated exponential function. According to207

its diameter class, each tree was assigned a DBH drawn randomly from this208

exponential distribution. Because height-diameter allometries can vary from209

one region to another, we used the central African Weibull-H model from210

Feldpausch et al. (2012) to estimate the tree height from DBH. We assigned211

a wood specific gravity value (WSG; i.e., wood density) to each tree based212

on its taxonomy using the WSG dataset of Gourlet-Fleury et al. (2011).213

The AGB was then estimated using the moist pantropical equation from214

Chave et al. (2005). Finally, the AGB density (t.ha−1) was estimated for215

each 0.5-ha field plot by summing the tree AGBs of all individuals with a216

higher expansion factor (8 or 10) for trees between 10 and 30 cm DBH (these217

trees were sampled in a fifth or a quarter of the 0.5-ha plots). During all the218

steps, we propagated the errors associated with the diameter assignment, the219

height estimation, the wood specific gravity estimation, and the AGB model220

thanks to the Monte Carlo simulations (1000 iterations).221

3.3. SAR data222

Six ALOS PALSAR mosaics (five paths) with 25-m resolution over the223

study area (latitudes from 3 to 5o and longitudes from 15 to 18o), acquired224

from 4 July to 12 November 2007, were supplied by JAXA. One unit mosaic225

data contains one degree latitude-longitude geographical unit. The signal226

was converted into γo values using the following equation:227

γo = 10.log10(DN2) + CF (1)

where DN stands for digital number and CF is a calibration factor de-228

scribed in Shimada et al. (2009). The data have been processed by JAXA229
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Figure 5: Summary of the successive steps for above ground biomass (AGB) calculation.

using the large-scale mosaicking algorithm from Shimada and Ohtaki (2010).230

It includes ortho-rectification, slope correction and radiometric calibration231

between neighbouring strips. The slope correction accounts for the vari-232

ations in the ground scattering area and the local incidence angle. The233

method precisely calculates the illumination area from the Shuttle Radar234

Topography Mission (SRTM) digital elevation model (DEM) and applies a235

correction factor to the backscattering coefficient based on the local inci-236

dence angle. The radiometric calibration between two neighbouring strips237

is performed by comparing the intensities of small coregistered image chips238

that are extracted from the overlapped region from half of each of the far239

and near ranges. The resulting gain and offset are used to correct the two240

neighbouring strips. Note that these methods, which are optimized to reduce241

backscatter mismatches among adjacent paths, can introduce modifications242

of the backscatter that might hamper AGB retrieval.243
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The equivalent number of looks (ENL) for the ALOS-PALSAR data was244

16 after these pre-processing steps. The six images were then geolocated245

(latitude/longitude coordinates were assigned to each pixel) using the coor-246

dinates of the four image corners and mosaicked. The terrain slopes were247

derived from the SRTM DEM with approximately 90 m resolution.248

4. Experimental Approach249

4.1. Reduction of the uncertainties250

To test whether the signal attenuation found in section 2 experimentally251

occurs in dense forests, we reduced the perturbing factor effects as much as252

possible. The estimation of radar backscatter at the pixel basis is mainly253

affected by the speckle noise, which is modelled as multiplicative noise and254

depends on the ENL. To reduce the effects of speckle noise, we degraded the255

PALSAR resolution within a 1-km resolution grid by averaging the pixels,256

and we averaged the field plots, leading to upscaled plots, to the same 1-km257

grid. The resulting ENL of the ALOS-PALSAR data, estimated by dividing258

the square of the mean backscatter intensity by the corresponding variance259

over a set of homogeneous areas, was > 2, 000.260

The perturbing effects linked to in situ observation geometry include the261

plot size, tree canopy layover and border effects, errors in data geolocation262

and topographic effects. We discarded the upscaled plots that contained less263

than two 0.5-ha field plots. The remaining upscaled plots contained a mean264

field plot size of 2.1±0.6 ha and were all ≥ 1 ha, which may correspond to an265

AGB estimation sampling error less than 17% according to Réjou-Méchain266

et al. (2014). Then, we attempted to optimise the representativeness of the267
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ground information in the whole 1-km pixels and selected the pixels that268

were likely to contain homogeneous forests. We calculated the coefficient269

of variation (CV) of the AGB among the field plots within each upscaled270

plot and filtered out upscaled plots with a CV > 0.25. The forest under271

study has to be homogeneous enough to maximise the representativity of 1272

ha or more of in situ AGB into 100 ha of forest. Therefore, we discarded273

upscaled plots with a standard deviation of the SAR backscatters > 0.75 dB.274

The latter thresholds were chosen as a compromise between the quality and275

the number of remaining observations (see Appendix C). It is interesting276

to note that the standard deviation of the SAR backscatters was highly277

correlated to the standard deviation of the terrain slope (i.e., the standard278

deviations were calculated from the original 25 m and 90 m subpixels within279

each 1-km pixel). The selection of pixels with low standard deviations of280

SAR backscatters therefore reduced topographical heterogeneities, which are281

a major driver of biomass heterogeneity (Réjou-Méchain et al., 2014) and a282

major source of uncertainties in radar backscattering (Van Zyl et al., 1993).283

Topographical effects were also reduced by discarding upscaled plots with a284

median of the slope > 2o. This step ensured both higher forest homogeneity285

within the pixels and lower noise in the radar backscattering.286

In the following, we assume that the backscatter saturation occurs for287

AGB of approximately 150 t.ha−1 (Mermoz et al., 2014) and we discarded288

the few upscaled plots with less than 150 t.ha−1 in the analyses.289

When using multitemporal radar data, sources of noise include environ-290

ment effects (soil moisture) and radar calibration. Temporal shifts between291

in situ and radar data acquisitions may also induce biases. In our study,292
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the temporal variation of the backscatter signal was minimized because the293

upscaled plots used for the calibration were derived from ALOS images ac-294

quired from 4 July to 29 September 2007, i.e., during the wet season. The295

temporal difference between the radar data acquisition (2007) and the field296

surveys for in situ data (from 1993 to 2006) was rather important. A recent297

study conducted in the same study area by Gourlet-Fleury et al. (2013) in298

permanent plots monitored since 1982 showed a mean gain in AGB of 2.58299

and 4.82 t.ha−1.yr−1 for the control and logged plots respectively. Thus, the300

largest expected AGB change between the field surveys and the radar data301

acquisition was 68 t.ha−1. However, note that the oldest inventories, which302

were conducted in IFB, were located on poor sandy soils characterized by a303

pool of species with higher wood density and lower growth rates (Gourlet-304

Fleury et al., 2011; Fayolle et al., 2012; Réjou-Méchain et al., 2014). Thus,305

the largest AGB change of 68 t.ha−1 is unlikely to occur in that area. In ad-306

dition, the study area is not subject to large scale deforestation; thus, even307

if disturbances occurred within the pixel, this would probably lead to a large308

CV in the backscatter signal and our data quality filter would discard such309

a pixel.310

Details on the effects of upscaled plot selection on the relationship be-311

tween the radar backscatter and AGB are provided in Appendix C.312

4.2. Empirical model calibration313

The relationships between ALOS backscatters and field AGB were estab-314

lished using linear regressions. The Pearson coefficient of correlation r and315

the bias (in dB) were used to assess the quality of the fits. To assess the ro-316

bustness of our model parameters, we used Monte Carlo simulations (n=1,000317
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simulations) where field AGB uncertainties were propagated to the calibra-318

tion model. For each simulation, field AGB values were drawn randomly319

and independently from the normal distributionN (µAGB,plot, σAGB,plot) where320

µAGB,plot and σAGB,plot are, respectively, the mean and the standard deviation321

of the field AGB within an upscaled plot (see Appendix B). At each sim-322

ulation, the parameters of the linear regression between ALOS backscatters323

and field AGB were stored.324

4.3. Results325

SAR backscatter at HV polarization versus in situ AGB after the selection326

process are shown in Figure 6. The field dataset had 4,755 upscaled plots327

of 1 km2 at HV polarization before the selection process and 632 after. The328

remaining in situ AGB have a mean of 312.3 t.ha−1 and range from 150.1329

to 545.6 t.ha−1. For illustration purposes, we added in Figure 6 1-ha field330

plot data, shown in red, acquired from the REDDAF project (Haeusler et al.,331

2012) in 2011 in the Adamawa Province, Cameroon and in 2013 in the Central332

Province, Cameroon. Sixteen savanna and 25 forest plots were surveyed.333

Only 1-ha plots with AGB below 150 t.ha−1 and slopes below 5o were used,334

i.e., 21 savanna and 5 forest plots. The field data processing followed the335

methodology in Mermoz et al. (2014). The resolution used for these data is336

1 ha (not 100 ha as with upscaled plots from the CAR).337

The relationships in Figure 7, which is a zoom of the small window found338

in the right part of Figure 6 at HH and HV polarizations, show strong and339

significant negative correlations with AGB (P < 0.0001). The linear decrease340

observed in Figure 3 is well reproduced by the empirical approach. The best-341

fit linear regression at HH polarization, using 635 upscaled plots, was found342
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Figure 6: SAR backscatter at HV polarization versus in situ above ground biomass (AGB)

after the selection process. Twenty-one savanna and 5 forest 1-ha field plots, acquired from

the REDDAF project (Haeusler et al., 2012), in 2011 in the Adamawa Province, Cameroon

and in 2013 in the Central Province, Cameroon, were added.
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to be γo
HH = −6.25− 9.47.10−4×AGB with a Pearson’s r of 0.47. The best-343

fit linear regression at HV polarization, using 632 upscaled plots, was found344

to be γo
HV = −11.34− 8.29.10−4 ×AGB, with a r of 0.43. The straight lines345

corresponding to the linear regression models in Figure 7 are surrounded with346

the 95% confidence envelopes of the regression domains. The coefficients of347

correlation r at both polarizations were significantly higher than the critical348

value at the 2% risk for 632 plots, i.e. r ' 0.1. The backscatter γo
HH was349

more correlated to in situ AGB than γo
HV , and although the HH polarization350

is more sensitive to environmental error sources, such as soil moisture, γo
HH351

was not more biased than γo
HV . In addition, it is well known that the random352

error in the independent variable, such as the error that results from sam-353

pling errors in AGB, leads to a systematic underestimation of the slope in354

an ordinary least square regression, a bias referred to as regression dilution355

(Fuller, 1987; Réjou-Méchain et al., 2014). Thus, in this study, the atten-356

uation has probably been under-estimated through a dilution effect in the357

regression parameters.358

The field AGB uncertainties were propagated to the calibration model359

using a Monte Carlo scheme (n=1000 simulations) to assess the robustness360

of our model parameters. The mean slope was found to be −9.47.10−4 ±361

1.38.10−6 and −7.84.10−4±7.49.−5 at HH and HV polarizations respectively,362

and all the resulting slopes were negative. Therefore, the negative slopes are363

unlikely to be attributed to the field AGB uncertainties.364

20



Figure 7: Backscattering coefficient γo versus in-situ above ground biomass (AGB) (zoom

of the small window found in the right part of Figure 6). For illustration purposes, the dots

are the mean values per 25 t.ha−1 biomass class and the bars are the standard deviations of

points per 25 t.ha−1 biomass class. The linear regressions (black solid lines) were fitted to

the individual upscaled plot data (see Figure 6). The observed correlations were Pearson’s

r of 0.47 and 0.43 at HH and HV polarizations respectively. The uncertainty domains

regarding the backscatter estimation for a given AGB, related to the prediction interval

from the linear model, are plotted in grey dash-dotted lines.
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5. Discussion365

The methodology often used for AGB mapping with the L-band is to ap-366

ply the inverse model to all pixels having backscatter intensities less than the367

saturation point, and to assign an AGB value equal to the saturation point to368

the other pixels. First, the value of the saturation point should be identified369

clearly, which is highly difficult without numerous and accurate calibration370

points. Second, this approach can lead to a strong and systematic under-371

estimation of AGB, as illustrated by our results, because the backscatter of372

high biomass forests may be on average lower than the previously assumed373

signal saturation point. For example, 718 upscaled plots over the 1019 plots374

from the IFB concession have γo
HV below the maximum backscatter (-11.52375

dB, corresponding to AGB of 150 t.ha−1) of the model calibrated in Mermoz376

et al. (2014). If such an approach was implemented in the present study, the377

inversion of plots with in situ AGB of 200, 400 and 600 t.ha−1 would have378

given, on average, AGB estimates of 159.7, 95.6 and 79.7 t.ha−1, respectively.379

The higher the AGB of the forest, the greater the AGB under-estimation by380

the inversion model. This phenomenon is illustrated in Figure 8 where AGB381

from Cameroon at 1 ha resolution and from the CAR at 1 km resolution are382

estimated from the model of Mermoz et al. (2014), which is dedicated to the383

estimation of AGB < 150 t.ha−1, and compared with field AGB.384

The effect of the signal attenuation is illustrated in Figure 9, showing385

the AGB map over the SCAF concession that is obtained using the sigmoid386

model of Mermoz et al. (2014). Over an 11 km2 area of mature dense forest,387

the mean AGB estimated in situ is 238 t.ha−1 (based on 9 upscaled plots388

with 2.5 ha mean size), whereas the mean AGB estimated by SAR is only389
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Figure 8: AGB from Cameroon at 1 ha resolution and from the Central African Republic

(CAR) at 1 km resolution, estimated from the model of Mermoz et al. (2014), which is

dedicated to the estimation of AGB < 150 t.ha−1. The AGB > 150 t.ha−1 are strongly

under-estimated.

109 t.ha−1, a value far lower than the saturation point, e.g., 150 t.ha−1. On390

the contrary, over an 11 km2 area of early successional forest where the mean391

AGB estimated in situ is 88 t.ha−1 (based on 9 upscaled plots with 2.3 ha392

mean size), the SAR backscatters are unexpectedly high. The mean AGB393

estimated by SAR is therefore overestimated with 145 t.ha−1 (more than394

91% of the pixels estimated by SAR are set up to the saturation point).395

23



This extreme exemple shows that the SAR backscatter may be far higher396

over early successional forests than over mature forests, resulting in entirely397

inverted AGB patterns. It illustrates a strong decrease in backscatter with398

AGB. It is important to note that the high backscatter over early successional399

forests in this example is neither explained by wetness due to flooding nor400

by topography.401

A major problem is that it is impossible to know based solely on backscat-402

ter intensities if a pixel should be inverted because it is below the maxi-403

mum backscatter or should be discarded because it is above the maximum404

backscatter. The most straightforward solution is to use independent sources405

of information, such as land cover maps, to mask out dense forest areas as406

performed in Mermoz et al. (2014). For example, in Africa, land cover maps407

containing ’dense forest’ classes have been recently achieved over a large part408

of the Congo Basin at 250 to 1000 m resolution (Vancutsem et al., 2009; Gond409

et al., 2013; Viennois et al., 2013) or over the entire Congo Basin at 300 to410

1000 m resolution (Verhegghen et al., 2012). However, further sources of er-411

rors are associated with land cover maps (Morton et al., 2014) and may also412

impact the final AGB map. The products of forest canopy density (DiM-413

iceli et al., 2011; Sexton et al., 2013) may also be used to assess the forest414

density and ensure a good application of the AGB model. Another highly415

conservative solution is to lower the maximum value of AGB that can be416

inferred from the inversion model, so that any backscatter value that would417

have been influenced by the attenuation effect is discarded. In the present418

study, the higher attenuation effect observed for field AGB > 150 t.ha−1 led419

to an estimated value of 70.3 t.ha−1. Thus, any map with a maximum value420
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Figure 9: AGB map over a 1000 km2 area centred on 3.70oN and 16.45o over the SCAF

concession, that would be obtained using the model of Mermoz et al. (2014), which is

dedicated to the estimation of AGB < 150 t.ha−1. Over an 11 km2 area of dense forest,

the mean AGB estimated in situ is 238 t.ha−1 (based on 9 upscaled plots with 2.5 ha mean

size), whereas the mean AGB estimated by SAR is only 109 t.ha−1, a value far lower than

the saturation point, e.g., 150 t.ha−1, and the field-based estimate. Over an 11 km2 area

of young forest, the mean AGB estimated in situ is 88 t.ha−1 (based on 9 upscaled plots

with 2.3 ha mean size), whereas the mean AGB estimated by SAR is 145 t.ha−1. This

example shows that SAR backscatter may be far higher over young forests than over old

dense forests and illustrates the decrease in the backscatter with AGB.
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of 70 t.ha−1 would be not affected by the attenuation effect.421

We also illustrated in this study that a much accurate relationship be-422

tween L-band backscatters and AGB values was observed when all the possi-423

ble sources of errors were minimized. An adequate ground sampling strategy424

focusing on homogeneous areas in terms of radar backscattering and topog-425

raphy and avoiding steep areas will significantly reduce the errors associated426

with the calibration step (Réjou-Méchain et al., 2014). This is especially427

important if the maximum backscatter needs to be inferred accurately. How-428

ever, this strategy should be weighed against the potential to bias the cali-429

bration model if forests in steep areas differ systematically in the relationship430

between the backscatter signal and biomass.431

6. Conclusions432

In the literature, there is a wide consensus that L-band backscatter inten-433

sity increases with AGB for small AGB values and subsequently saturates for434

larger values. In this study, we used both theoretical and experimental ap-435

proaches to investigate the behaviour of L-band signals in dense forests. The436

theoretical modelling results proved that a backscatter decrease with AGB437

can occur in dense forests, resulting from the saturation of the free-space438

(or no attenuation) backscatter, while attenuation still increases with forest439

AGB. We then tested whether the signal attenuation experimentally occurs440

in dense forests and showed that the theoretical backscatter decrease was well441

reproduced by the experimental approach. The decrease in the backscatter442

can have strong implications for L-band vegetation mapping, such as severe443

biomass under-estimation and reversed patterns of AGB. Some solutions were444
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proposed to counteract these effects.445

As shown in this study, the L-band does not entirely lose sensitivity at446

large biomass values, suggesting that much progress can be made by refining447

our understanding of radar backscattering behaviour at L-band. Given the448

successful launch of ALOS2 in May 2014 and the future SAOCOM mission449

planned for launch in 2017, further works should test the generalization of the450

L-band’s signal attenuation in other forest types, as Lucas et al. (2007) found451

in a mangrove forest. Our result could be, for example, strengthened by a452

validation in various study areas. Because large field datasets such as the one453

used in our study are extremely scarce, especially in the tropics, the recent454

AGB maps derived from high-resolution airborne LiDAR data (Asner et al.,455

2010) may constitute a good opportunity to test such signal attenuation. If456

our finding is generalized elsewhere, the backscatter decrease could be used457

as a new model for inferring high biomass values at 1km resolution over458

dense forests based on forest canopy density products. This would represent459

a novel approach and a major advance in the use of L-band SAR for AGB460

estimation.461
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ment). We also address special thanks to the Ministère des Eaux, Forêts,468

27
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Appendix A. Forest growth model used for electromagnetic sim-804

ulations805

The forest growth model (Figure 2) has been developed to model all the806

geometrical parameters required for the EM calculations (in the MIPERS807

model) as a function of forest AGB. The first step turns the input AGB into808

forest total height (trunk+crown) based on the allometric equation proposed809

in Asner et al. (2012) for forests in Peru.810

Wood density, which is essential in the MCH to AGB relationship and to811

turn biomass values in terms of the geometrical parameters describing the812

modelled forest, has been kept constant given the poor correlation with forest813

AGB. However, the impact of the dispersion around the mean value (0.58)814

is shown in Figure 3 (filled colour domains).815

The allometric equations (2) and (3) in Figure 2 are used to compute816

DBH and BA. Equation (2) has been formulated from tree height. Likewise,817

the number of trunk per hectare Nt has been estimated with the hypothesis818

of a trunk layer composed of a single class of DBH (the DBH of all the819

trunks is constant), so that Nt is simply deduced from DBH and BA. Such820

an approximation is limiting to generalize our modelling approach to several821

tropical forests (for which various classes of DBH would better match the822

various populations of trunks). For example, this DBH approximation leads823

to unrealistic numbers of trunks per hectare in the other test sites used in824

Asner et al. (2012) (Panama, Hawaii and Madagascar). More complex forest825

growth models have been developed to overcome this limitation but are not826

yet published, and their description would require many details in this paper,827

in which the EM simulations have not been used to draw universal theoretical828
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laws but to support and explain our experimental results.829

The crown height ht varies linearly from approximately 60% to 75% with830

increasing forest biomass. Considering conical cylinders for the trunks to831

account for the tapering factor, the total AGB can be formulated as follows :832

AGB[t/ha] =AGBt[t/ha] + AGBc[t/ha]

=Nt · ρ ·
π

3
ht

(
r2BA + rBArt + r2t

)
+ ρπ

(∑
i

Nir
2
i hi

) (A.1)

where rt is the radius of the trunks at the top of the trunk layer. The833

remaining geometrical parameters concern the branches (classes 3 and 4)834

within the crown layer, which are deduced from their upper class, based on835

the branching rules governed by surface conservation (commonly referred to836

as the pipe model).837

Appendix B. Details on the above ground biomass calculation and838

errors propagation839

Appendix B.1. Wood specific gravity840

We used the African wood specific gravity (WSG) dataset of Gourlet-841

Fleury et al. (2011) to assign a WSG value to each tree. This dataset was842

based on 1206 trees belonging to 256 African species and on 29 additional843

species identified to the genus level. For each taxa, the assignment rules of844

Gourlet-Fleury et al. (2011) give a mean WSG values per taxa at the species,845

the genus, the family, the order or the global levels. A variance associated846

with each WSG estimate was calculated using repeated WSG values within847

taxa levels (Gourlet-Fleury et al., 2011). Overall, 55.6 % of the individuals848
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had a WSG attributed at the species level, 0.2 % at the genus level, 14.2 %849

at the family level, 20.3 % at the order level and 9.8% at the global level.850

Appendix B.2. Tree diameter851

In the original forest inventory, the trees were allocated into diameter852

classes. However, the biomass allometry used needs the exact DBH of the853

trees. Thus, we assumed an exponential distribution for the tree diameters.854

We estimated the parameter of the exponential distribution, α, by minimizing855

the sum of the absolute differences between the proportion of trees invento-856

ried in each diameter class (with the last class=[190 ∞[) and the proportions857

of trees expected by the exponential distribution (α = 0.0622 cm−1). Then,858

for a tree in a given diameter class, we used the exponential distribution of859

parameter truncated to its diameter class. For example, a tree with its DBH860

in the class [30 40[ has a diameter distribution defined by861

F (DBH) =
e−α.DBH∫ 40

30
e−α.DBHdDBH

.I[30 40](DBH) (B.1)

with I[30 40](DBH) = 1 if the DBH is [30 40[ and 0 otherwise.862

Appendix B.3. Tree height863

Height-diameter allometry varies strongly among tropical regions: for a864

given diameter, a high variability of tree height occurs according to the re-865

gion considered. To minimize this potential bias, we used a regional specific866

height-diameter model based on 2,572 measured trees in central Africa (Feld-867

pausch et al., 2012):868

H = 50.453(1− e−0.0471.DBH0.812

) (B.2)
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where H is the estimated tree height and DBH is the diameter at breast869

height estimated from the fitted truncated exponential function.870

Appendix B.4. AGB estimation and uncertainties871

To estimate both the mean AGB per 0.5-ha field plot, µAGB,plot, and the872

AGB variance, σ2
AGB,plot, we built a Monte Carlo scheme with 1,000 simula-873

tions per plot. During the simulations, WSG values were first picked ran-874

domly and independently for each tree from the normal distributionN (µWSG, σWSG)875

where µWSG and σWSG are, respectively, the mean and the standard devi-876

ation of the WSG values for a given taxa (see Appendix B.1). The DBH877

of each tree was drawn randomly from the exponential function between the878

two boundaries of its diameter classes (see Appendix B.2). The tree height879

was then estimated from these DBH values as follows:880

H = 50.453(1− e−0.0471.DBH0.812

) + εH (B.3)

where εH is a random error drawn from a normal distribution, with 6.177881

being the residual standard error (RSE) of the height-diameter model pro-882

vided in Feldpausch et al. (2012). The AGB values were then calculated883

independently for each tree and at each simulation using the model of Chave884

et al. (2005):885

AGB = e−3.027+log(WSG.DBH2.H)+εAGB (B.4)

where εAGB is a random error drawn from a normal distributionN (0, 0.316),886

with 0.316 being the RSE of the AGB model provided in Chave et al. (2005).887
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For each 0.5-ha field plot, we finally calculated µAGB,plot and σ2
AGB,plot, as888

the mean and the variance of the 1000 AGB estimates per plot respectively.889

These field plots AGB estimates µAGB,plot were then averaged in a pixel of 1890

km resolution to obtain upscaled plots, and the standard deviation associated891

with a pixel AGB value, σ2
AGB,pixel, was calculated as follows:892

σ2
AGB,pixel = E(σ2

AGB,plot) + σ2(µAGB,plot) (B.5)

where σ2(µAGB,plot) is the variance of the plot-based AGB values µAGB,plot893

contained in the pixel.894

Appendix C. Details on the reduction of the uncertainties895

Appendix C.1. Uncertainties from the coefficient of variations among the896

field plots897

The effects of the CV among the field plots within each upscaled plot898

on the relationship between SAR backscatter and AGB are quantified for899

CVs ranging from 0.1 to 0.5. Upscaled plots with the standard deviation900

of the backscatter > 1 dB and slope median > 5o were discarded. The901

best linear regressions are performed each time at HH and HV polarizations.902

The resulting r and biases are shown in Figure C.1 and are associated with903

the number of pixels used to compute the fits (vertical solid bars). Both904

γo
HH and γo

HV show decreasing r (from 0.39 to 0.21 and from 0.35 to 0.20,905

respectively) and slightly increasing biases (from 0.12 to 0.14 dB independent906

of the polarization) with an increase in the AGB CV. When CV< 0.25, γo
HH907

was found to provide the best fit and a smaller bias. The trends start to908

saturate when the CV is over 0.4. The threshold of 0.25 has been chosen909
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to ensure that the slope of the regressions and the Pearson correlations were910

acceptable while keeping a significant amount of pixels. A more drastic911

selection would discard almost all the pixels.912

Figure C.1: Effects of the coefficients of variation (CV) among the field plots within each

upscaled plot on the radar sensitivity to above ground biomass (AGB): r and bias are

shown in figures at the top and bottom, respectively. The frequencies of the remaining

upscaled plots are indicated by vertical solid bars.
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Appendix C.2. Uncertainties from topography913

The effects of terrain slope on the relationship between radar backscatter914

and AGB are assessed, with slope medians ranging from 0.25 to 2.50o. We915

filtered out upscaled plots with CV > 0.25 and standard deviations of the916

backscatter > 1 dB. The quantitative results are shown in Figure C.2. Both917

γo
HH and γo

HV show a decreasing r (from 0.45 to 0.22 and from 0.39 to 0.22,918

respectively) and an increasing bias (from 0.11 to 0.14 dB independent of the919

polarization) with an increase in the slope median. When the slope median920

< 5o, γo
HH was found to provide the best fit and a slightly larger bias. The921

trends start to saturate when the slope median is over 6o.922
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Figure C.2: Effects of the median of terrain slope on the radar sensitivity to above ground

biomass (AGB): r and bias are shown in figures at the top and bottom, respectively. The

frequencies of the remaining upscaled plots are indicated by vertical solid bars.
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