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ABSTRACT

This paper is devoted to a presentation of the authors’ practise of the nonparametric

estimation theory for the estimation, filtering and control of uncertain dynamic systems. The

fundamental advantage of this approach is a weak dependency on prior modeling assumptions

about uncertain dynamic components. This approach appears to be of great interest for the

control of general discrete-time processes, and in particular biotechnological processes, which

are emblematic of nonlinear uncertain and partially observed systems.

1. INTRODUCTION

This paper is devoted to a survey of consistent applications of the nonparametric estima-

tion theory for estimating, filtering and control of uncertain dynamic systems. It relies on

a set of works the authors have been developing for more than ten years which emphasize

the efficiency of these nonparametric tools in functional estimation as well as in probability

density estimation in the context of controlled dynamic systems.

Therefore this presentation does not pretend to give the state-of-art in the field and an

exhaustive survey of the applications of the nonparametric estimation theory to dynamic

systems is out of the scope of the paper. The interested reader will take advantage to
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consult recent works, as for example (Fan & Yao, 2003) for a general approach of the issue

and (Greblicki, 1997), (Greblicki, 2002), (Greblicki, 2004) for a more specialized control

engineering point of view, in addition to that we used and referenced in the paper.

The frame of the approach is that of the control of general discrete-time processes, and

in particular biotechnological processes, which are emblematic of nonlinear uncertain and

partially observed systems. The field of bioprocess modeling and control offers typical ex-

amples of structural time-variations problems which cannot be handled by classic control

methods: the dependence of the kinetic coefficients on biomass and substrate state variables

is affected by functional fluctuations and not merely parametric ones. In that case, a more

appropriate approach would be robust control, in which uncertainty is explicitly accounted

for at the beginning of the control design through numerical or functional bounds. However,

the performance of the related controllers can be sensitive to settings that are too much

conservative or too much optimistic. The nonparametric approach is free from these prior

assumptions: through a stochastic learning process, uncertain functional components are

progressively and automatically estimated as deterministic or random functions of the mea-

sured quantities, in accordance with their actual but unknown and possibly time-varying

structures. The use of this functional estimation procedure, compared with the usual and

more or less arbitrary choice of these model components, contributes to the reduction of one

source of model inadequacy. Moreover, the stochastic frame in which these nonparametric

models are designed allows some uncontrolled disturbances such as measurement errors and

parameter variations to be accounted for.

In the following we shall present successively application of this nonparametric approach

to identification, filtering and control of dynamic systems.

2. FRAMEWORK

The uncertain processes under consideration belong to the general class of controlled

Markov chains. They are represented by discrete-time autoregressive models of the following

type:

Xt+1 = Ft(Xt, Ut, εt+1), (1)
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where Xt ∈ R
s, Ut ∈ R

m and εt are the output, input and noise of the system, respectively.

The driving function Ft may be completely or partially unknown, according to the degree of

uncertainty in the analytical knowledge of the process. This function may be deterministic

or stochastic and is supposed to obey some regularity conditions (see §2.2.). Moreover, when

the state variable Xt is not observed, an observation model is supposed to be available:

Yt = Gt(Xt, Ut, ηt) (2)

where Yt ∈ R
q and Gt is a known function and ηt an observation noise.

Estimating function Ft in model (1) may be intricate. The following particular case with

an additive noise is more frequently met in practice:

Xt+1 = ft(Xt, Ut) + εt+1, (3)

in which function ft, from R
s × R

m to R
s, may be completely or partially unknown. We

are more particularly interested in a type of non-linear models where the control variable Un

acts in a known part of function ft, such as models in the field of bioprocess modeling and

control. They are of the form:

Xt+1 = At(Xt)gt(Xt) + Bt(Xt, Ut) + εt+1, (4)

where At and Bt are known functions and function gt is unknown. gt can represent the

growth rate of some microorganism population whose concentration is a component of the

state variable Xt. The control variable Ut is for example the dilution rate of a polluted water

at the entrance of a bioreactor.

Other examples of model (3) are for instance the evolution models of bacteria populations

in food under the influence of environment covariates (Ut), or, in another field, models that

describe the position of a space craft under control.

2.1. DEFINITIONS

We define a control policy, or strategy, as a sequence of deterministic mappings d = (dt),

t ≥ 0, from (IRs)t to the space of controls U , such that Ut = dt(X1, . . . , Xt). For all x ∈ IRs

3



we shall consider the set of admissible controls with respect to x, to be a subset A(x) of

U , for which dt(x1, . . . , xt−1, x) ∈ A(x). A policy (dt) will be said to be A-admissible, or

admissible for short, if ∀t, Ut ∈ A(Xt).

Moreover, Model (1) is said to be stabilizable by the use of any admissible policy, if, for

any ξ > 0, there exists a compact set C of IRs satisfying the following property: for any

initial law of X0 and any admissible strategy d,

lim inf
t→∞

1

t + 1

t∑

i=0

1lC(Xi) ≥ 1 − ξ a.s., (5)

where 1lC stands for the indicator function of the set C. Sufficient conditions for this last

property are introduced in the next paragraph.

2.2. ASSUMPTIONS

The following assumptions underlie most of the classic works in functional estimation

of controlled nonlinear Markovian systems (Duflo, 1997). In the framework of bioprocesses

they are not always easy to check, in particular assumptions 1 and 3. The satisfaction of

these assumptions depends on the prior knowledge about the system.

The following set of assumptions about the noise ε will be needed.

Assumption 1 The noise ε = (εn) is a sequence of independent and identically distributed

(i.i.d. for short) random vectors with mean 0 and covariance matrix Γ. Its distribution

probability function is absolutely continuous (with respect to the Lebesgue measure), with a

probability density function p supposed to be positive and C1-class, and p and its gradient

are bounded. ε admits a finite moment of order mε strictly greater than 2.

Let us note that Assumption 1 is satisfied with a Gaussian white noise.

Assumption 2 There exists a constant w < 1 such that

lim sup
||x||→∞

supi∈IN supu∈A(x)(||fi(x, u)||)

||x||
≤ w a.s.
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This last condition implies the stabilizability of the systems when Assumption 1 holds, for

the particular cases of models (3) and (4), where the noise appears additively.

Assumption 3 There exists a finite constant R such that, for all initial law of X0 and all

admissible control policy, lim inf
t→∞

1
t

t−1∑

i=0

1l‖fi(Xi,Ui)‖≤R > 0 a.s.

This assumption is weaker than the stabilizability condition (5). It is in fact a consequence

of the stabilizability condition when Assumption 1 holds.

The global behaviour of the unknown set of stochastic functions ft (resp. gt) must be

quite “stable”. The following conditions imply this requirement:

Assumption 4 The sequence (ft) (resp. (gt)) is a.s. equicontinuous and verifies one of

these conditions

(a) ft (resp. (gt)) converges a.s. uniformly on x and u to an unknown function f (resp. g)

(b) (ft) (resp. (gt)) is an i.i.d. sequence of mean f (resp. g), an unknown function of finite

norm.

Note: Assumption 4 holds if (ft)(resp. (gt)) is a constant or continuous function f(resp. g).

Finally, in the special class (4) of bioprocess models, we need an additional assumption,

on matrix At. Let A−
t denote a general inverse, assumed to verify the following:

Assumption 5 ∀r > 0, sup{||A−
t (x)|| ; t ≥ 0, ||x|| ≤ r} < ∞.

2.3. APPLICATION: A BIOPROCESS MODEL

Let us consider the basic dynamics of a microbial growth in a stirred tank reactor, which

in the case of one population of microorganisms on a single limiting substrate, is most often

described by the following system (see for example (Bastin & Dochain, 1990))




Bt+1 = (1 + T (µt − Ut))Bt + ε1

t+1

St+1 = St − TµtBt/τ + Ut(Sin − St)T + ε2
t+1

(6)

where the state variables Bt and St are the biomass (microorganisms) and substrate con-

centrations respectively, Ut the dilution rate is the control variable, Sin is the substrate
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concentration in the influent, τ is the yield coefficient of the substrate consumption by the

biomass, T is the sampling period. Sin, τ and T are known constants. The parameter of

interest here is µt, the microbial growth rate, which is an uncertain time-varying function of

the state. ε = t(ε1, ε2) is a white noise. This model is used to describe batch (Ut = 0) as well

as fed-batch or continuous (Ut 6= 0) operating conditions.

The growth rate µt can be influenced by many factors: biomass concentration, substrate

concentration, temperature, pH, . . . . For a given bioreaction this kinetic parameter is gen-

erally not well known, in spite of its crucial importance for a good modelling of the reaction

dynamic. More than fifty models have been proposed for µ in the literature (see (Bastin &

Dochain, 1990)). This model uncertainty is worse than unsatisfying and then a nonparamet-

ric approach could be appropriate to identify µt. It is easy to see that (6) enters the special

class of models (4), and also (3).

3. IDENTIFICATION AND ESTIMATION OF NONLINEAR STOCHASTIC PROCESSES

In this section two quite different contributions of the nonparametric estimation theory

to the study of the nonlinear Markovian processes described previously, are proposed.

The following subsection is devoted to the identification of model (3) and model (4) when

these models are unknown or partially unknown, with state Xt completely observed. The

convolution kernel method is applied to estimate function ft (or only a subpart of it).

In subsection 3.2. the state variables Xt will not be supposed to be observed anymore

and the issue considered will be that of their estimation (filtering) from knowledge of the

observed variables Yt and assuming knowledge of model Ft in (1) and model Gt in (2).

3.1. MODEL IDENTIFICATION WITH CONVOLUTION KERNEL ESTIMATORS

Kernel smoothing methods are among the most renowned nonparametric estimation and

prediction methods. They belong to the family of smoothing methods (orthogonal polyno-

mials, splines,. . . ) and are based on a local averaging procedure. They are widely used to

estimate probability density functions and regression functions, see (Bosq, 1996).

When the whole function ft is unknown in model (3), the following semi-recursive ker-

nel estimator, derived from that of Nadaraya-Watson (non recursive) (Bosq, 1996), can be
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advantageously considered from the point of view of on-line computing:

∀x ∈ R
s and u ∈ R

m f̂t(x, u) =

∑t−1
i=0 δ−s

1,i δ
−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)Xi+1

∑t−1
i=0 δ−s

1,i δ
−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)

, (7)

The functions K1 and K2 are two kernel functions: they are real positive symmetric functions

integrating to one.

The sequences (δ1,i) and (δ2,i), called the bandwidths, have to be positive and decreasing.

See (Georgiev, 1984) for the case of an i.i.d. sequence (Ut), and (Wagner & Vila, 2001) for

a more general situation.

In the case of biotechnological processes, the partially known model (4) is the most

frequently met. In that case, the kernel estimation of gt is given by:

ĝt(x) =

∑t−1
i=0 δ−s

i K(x−Xi

δi
)A−

i (Xi)(Xi+1 − Bi(Xi, Ui))
∑t−1

i=0 δ−s
i K(x−Xi

δi
)

∀x ∈ R
s. (8)

A−
i is a general inverse of matrix Ai and K is a kernel function and (δi) its bandwidth.

To simplify the presentation, let us first introduce the convergence results for the last

estimator (8). To that aim, we require the following set of assumptions:

Assumption 6 The common bandwidth δi := ρi−α, i ∈ N, ρ a positive constant, is chosen,

with α ∈ (0, 1/2s) (Duflo, 1997) and the kernel function K is supposed to verify one of the

two following assumptions:

(a) The kernel K has a compact support and is Lipschitz continuous.

(b) K is positive, bounded, Lipschitz continuous, such that
∫
||y||K(y)dy < ∞ and for y 6= 0,

K(y) = O
(
||y||−β

)
where β > αs+1

α
.

Assumption 6(a) is for example satisfied with the Epanechnikov kernel, and Assumption

6(b) with the Gaussian kernel, see (Härdle, 1990). Concerning the bandwidth parameters,

the form δi = ρi−α is one for which convergence results have been established (Duflo, 1997),

(Portier & Oulidi, 2000), (Hilgert, Senoussi, & Vila, 2000). In some cases, an optimal choice

of the bandwidth parameters can be determined by cross validation procedures, see (Vieu,

1991) for instance.
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Theorem 1 (Hilgert, 1997) Suppose that Assumptions 1, 4 and 5 hold. Then,

(a) under Assumptions 2 and 6(a), for any 0 < α < 1/2s, any admissible control policy and

any initial probability distribution ν of X0, ĝn converges a.s. to g uniformly on compact sets:

lim
t→∞

sup
x∈C

‖ĝt(x) − g(x)‖ = 0 a.s.

(b) let (vt) be a sequence of positive real numbers such that vt = O(tw), w > 0. Under

Assumptions 3 and 6(b), if ε is Gaussian, for any 0 < α < 1/2s, for any admissible control

policy and any initial probability distribution ν of X0, ĝn converges a.s. to g uniformly over

dilated compact sets:

lim
t→∞

sup
||x||≤vt

‖ĝt(x) − g(x)‖ = 0 a.s.

Moreover these convergence results are extended to (7) in the case of model (3) when

the control law Ut excites the system sufficiently: it is supposed to be of the form Ut =

ht(Xt) + γtζt, where ζt is a Gaussian noise, γt is a positive sequence decreasing to 0 and

(ht) is a uniformly bounded sequence of functions. With this general setting, the results of

Theorem 1 still hold, see (Wagner, 2001).

Application

In the following, we supposed that the state t(Bt, St) has been observed at any instant

and we considered the simple case where µt is an unknown time-varying function of the

substrate concentration S, µt(S) = gt(S). From a sequence (S0, S1, . . . , St) of observed

substrate concentrations we defined, following (8), the kernel estimator of µt:

µ̂t = ĝt(St) =

∑t−1
i=1

1
δi

K(St−Si

δi
)(Si+1 − Si − TUi(Sin − Si))(

−τ
TBi

)
∑t−1

i=1
1
δi

K(St−Si

δi
)

(9)

The following case of a convergent sequence of unknown functions gt(.) is considered for

simulations:

µt = gt(St) = (1 − at)µ
Monod
t + atµ

Tessier
t , (10)

where µMonod
t = µmax

St

θ + St

and µTessier
t = µmax(1 − exp(

−St

θ
)) (11)
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are the well known Monod and Tessier models for the growth rate µ(S) (see (Bastin &

Dochain, 1990)). µmax is the maximum growth rate and θ is the Michaelis-Menten constant.

We took at = exp(−(t − 1)2/2σ), which yields that µ1 = µTessier
1 and (µt − µMonod

t )
t→∞
−→ 0.

The sequence of functions (gt) was then the convergent deterministic sequence given by

gt(S) = (1 − at)µmax

S

θ + S
+ atµmax(1 − exp(

−S

θ
)). (12)

Under these specifications the system (6) checks all the assumptions required to prove that

ĝt(S) is a strong consistent estimator of gt(S) for all S in a given compact set. Moreover it

can be shown that µ̂t is also a consistent estimator of µt under further appropriate conditions.

µ Tessier

µ Monod

µ
µ̂

0 50 100 150 200 250
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

times (hours)

1/h

Figure 1: Trajectory of the simulated growth rate µ, obtained from the Monod and Tessier laws,

and representation of the estimation µ̂.

The behaviour of the kernel estimator µ̂t is displayed in Figure 1, with the true µt

trajectory simulated from (10) and with the original µMonod
t and µTessier

t trajectories. The

corresponding simulation of the process is given in Figure 2.

The computation have been done with the Epanechnikov kernel, the bandwidth δi = ρi−α

with ρ = 4 and α = 0.4. Monod and Tessier models have been computed with θ = 1mg.l−1

and µmax = 0.05h−1 and model (10) with σ = 2 × 105. Model (6) has been simulated

with var(ε1
t ) = 10−2, var(ε2

t ) = 5 × 10−4, B0 = 1.2 mg.l−1 , S0 = 30 mg.l−1 , µ0 = 0.05h−1,

T = 0.17 h, Sin = 50 mg.l−1 , τ = 1 and the control law Ut = 1/(St + 30).

The convergence of µ̂t towards µt was as expected and quite rapid.

9



0 50 100 150 200 250
0

20

40

m
g/

l

substrate concentration
0 50 100 150 200 250

0

20

40

60

m
g/

l

biomass concentration

0 50 100 150 200 250
0.01

0.02

0.03

0.04

1/
h

times (hours)

dilution rate

U

B

S

Figure 2: Simulation of the biological process (6).

3.2. ESTIMATION OF STATE VARIABLES WITH CONVOLUTION PARTICLE FIL-

TERS

Besides its efficiency in functional estimation of uncertain models, as seen in the previous

section, the nonparametric approach has proved to be useful as well in probability density

estimation of unobserved state variables, i.e. in filtering problems.

The frame of this subsection, quite different from that of the previous one, is that given

by model (1) and model (2), in which the functions Ft and Gt are now supposed to be

completely known. On the other hand the state variables Xt are not observed anymore. The

issue turns out to be the estimation of Xt or more generally that of the probability density

function of Xt, from the analytical knowledge of the state model Ft (1), the observation

model Gt (2) and the observed variables Y1:t = (Y1, · · · , Yt). When Ft and Gt correspond to

linear functions of Xt and Ut with additive noises, the well-known Kalman filter provides an

optimal estimate of the probability distribution of Xt conditionally to Y1:t, P (Xt|Y1:t). In the

other cases, only the so-called Monte Carlo filters or particle filters (see (Doucet, De Freitas,

& Gordon, 2001) or (Del Moral, 2004)) provide consistent estimates of P (Xt|Y1:t). The main

principle of these filters is to build an estimate of P (Xt|Y1:t) through the simulation of a
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large number N of random state particles {xi} which are then weighted according to their

likelihoods with respect to the observed variables up to time t.

However the usual particle filters require, in practice, the function Gt to be additive in

the observation noise ηt, and the analytic form of the density of ηt to be known.

This last assumption really reduces the applicative potential of these particle filters. The

convolution particle filters proposed in (Rossi, 2004) and (Rossi & Vila, 2004) drop this

assumption thanks to the use of convolution kernels to estimate the conditional density

p(Xt|Y1:t), supposed to exist. The following algorithm shows the implementation of the

Resampled-Convolution Filter (R-CF), one of the filters we developed (Rossi, 2004):

Starting from a given initial probability density p0(X0) and N simulated state values

(X̃1
0 , . . . , X̃

N
0 )) ∼ p0(X0), then at time t:

(i) Sampling Step: (X̃1
t , . . . , X̃N

t ) ∼ pN
t where pN

t is the estimated state conditional density.

(ii) Evolving Step: for i = 1..N , (X̃ i
t) −→ (X̃ i

t+1, Ỹ
i
t+1) by simulation of model (1)-(2).

(iii) Estimation Step: pN
t+1(Xt+1|Y1:t+1) =

∑N

i=1 K2,δN
(Yt+1 − Ỹ i

t+1)K1,δN
(Xt+1 − X̃ i

t+1)∑N

i=1 K2,δN
(Yt+1 − Ỹ i

t+1)

with K1,δN
(x) = δ−s

N K1

(
x

δN

)
, x ∈ R

s and KδN
(y) = δ−q

N K2

(
y

δN

)
, y ∈ R

q.

This algorithm provides an ”on line” L1-convergent estimate of the density pt(Xt|Y1:t)

when the particles number N tends to infinity:

Theorem 2 (a.s. L1-convergence ) If K1 and K2 are positive bounded Parzen-Rosenblatt

kernels, if δN is decreasing with N , if p(·|Y1:t−1) is positive and continuous at yt and if there

exist M > 0 such that p(Yt|Xt) ≤ M for all t and α ∈] − 1, 0[ such that δ2q
N = O(Nα), then

lim
N→∞

Nδs+q
N

log N
= ∞ =⇒ lim

N→∞

∫
|pN

t (Xt|Y1:t) − pt(Xt|Y1:t)|dxt = 0 a.s.

Proof: This theorem is proved in ((Rossi, 2004) and (Rossi & Vila, 2004)).

The R-CF and more generally the particle filters are powerful tools to deal with hidden

Markov processes. But from a practical point of view it is more relevant to consider uncertain
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hidden Markov processes. More precisely an unknown fixed parameter θ is supposed to be

present in the model equation (1) or (2).

The natural approach, according to the particle filter principle, consists in setting a prior

probability law p0(θ) on the parameter θ and considering a new state, Zt = (Xt, θt), which

gathers all the unknown quantities. As θ is fixed the natural dynamic is θt+1 = θt. Then

the posterior law p(Zt|Y1:t) is approximated using particle filters and the previous algorithm

immediately adapts to this context.

However, the natural dynamic θt+1 = θt for the parameter, although theoretically well

adapted, leads to the divergence of the standard particle filters. This inefficiency results

from the fact that the parameter space is only explored at the initialization step of the clas-

sic particle filter algorithms, which causes the impoverishment of the variety of the relevant

particles. Fortunately the R-CF is not affected by this drawback. Indeed, its smooth ap-

proach ensures a good parameter space exploration throughout the filtering procedure. In

addition, results of consistency, for the R-CF with unknown parameter, has been established

in ((Rossi, 2004) and (Rossi & Vila, 2005)).

Application

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

m
g/

l

Estimation with N=500 particles

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

m
g/

l

Estimation with N=1500 particles

Figure 3: Biomass concentration estimation with the R-CF ( true values - -, estimations –)
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Let us consider the biological process introduced in section 2.3.with the parameter setting

of section 3.1. Here the problem is to estimate the biomass concentration using only the

measure of the substrate concentration given by equation (6). In addition we also assumed

that the constant µmax is unknown. The prior law used for µmax was p0(µmax) = U [0 0.2],

the uniform distribution over [0 0.2]. Figure 3 displays the R-CF estimation of the biomass

concentration, over 800 hours.

To make easy the comparison between the true value Xt and the estimation, we took a

punctual state estimate instead of the state posterior density. The estimate used is X̂N
t =

mean(X̃1
t , . . . , X̃N

t ), with (X̃1
t , . . . , X̃N

t ) obtained in step (i) of the R-CF algorithm. Under

suitable assumptions X̂N
t is a consistent estimate of E[Xt|Y1:t] ((Rossi, 2004)). As shown

by Figure 3, despite of uncertainties on the model, the R-CF filter provided good estimates

of the biomass concentrations. The theoretical properties of convergence as N → ∞ are

well illustrated as can be shown: the estimation obtained with N = 1500 particles is more

accurate than the one with N = 500.

4. NONPARAMETRIC ADAPTIVE AND PREDICTIVE CONTROL

The objective considered in this section is to find a control sequence (Ut)t≥1 which forces

the state variables (Xt)t≥1, to follow as best as possible a given bounded trajectory (X∗
t )t≥1.

The state variable Xt is now again supposed to be observed and to evolve according to model

(3), with function ft completely or partly unknown.

Two control strategies are considered in the following, according to the immediate or

anticipative trajectory fitness considered.

4.1. ADAPTIVE TRACKING CONTROL

Consider the particular case of model (4) suitable for the biotechnological systems, in

which gt is unknown. An adaptive control policy has to be built from the nonparametric

estimate ĝt (8), which ensures the stochastic closed-loop stability. This last property is

indeed necessary to ensure the convergence properties of the kernel estimator ĝt.

An a priori knowledge about function gt is then required; we assume that there exists a

continuous function g∗ and two constants cg ∈ [o, 1/2) and Cg ∈ (0,∞) such that, for all
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x ∈ R
s, t ∈ N, ‖gt(x) − g∗(x)‖ ≤ cg ‖x‖+Cg. Function g∗ characterizes the a priori knowledge

about functions gt and allows to compensate the possible lack of observations which could

disrupt the local estimator ĝt. When Bt is supposed to be invertible with respect to Ut, the

adaptive control law is the solution Ut such that

Bt(Xt, Ut) = X∗
t+1 − At(Xt)ĝt(Xt)1lEt

(Xt) − At(Xt)g
∗(Xt)1lEc

t
(Xt) (13)

where Et := {Xt ∈ {x : ‖ĝt(x) − g∗(x)‖ ≤ dg ‖x‖ + Dg}}, dg ∈ (cg, 1−cg) and Dg ∈ (Cg,∞).

Ec
t denotes the complementary set of Et. The set Et is introduced to ensure the closed-loop

stability of model (4).

The control law (13) satisfies the following properties:

1. Stability of the closed loop : the following sufficient condition is satisfied

lim sup
t→∞

1

t + 1

t∑

i=0

‖Xi‖
sup(2, mε

2
) ≤ Cte < ∞ a.s.

2. Almost sure uniform convergence of ĝt to g on dilated compacts

3. Asymptotic optimality: 1
t

t∑

i=1

‖Xi − X∗
i ‖

2 a.s.
−→ trace(Γ) as t → ∞, where Γ denotes

the covariance matrix of the noise εt.

See (Portier & Oulidi, 2000) and (Hilgert, 1997) for more details.

Application

Figure 4 shows a simulation result obtained with the adaptive controller (13) used to

regulate the substrate concentration around the reference value S∗ = 15 mg.l−1. The a

priori knowledge on model (6) was given by a Tessier model for the growth rate µ(s), with

a priori values of the parameters µmax and θ different from the ones used in the simulations.

Constants df and Df were conservatively chosen: df = 1/2 and Df = 1. The adaptive

controller revealed good tracking properties. A real experiment to control an anaerobic

fluidized bed reactor was also presented in (Hilgert, Harmand, Steyer, & Vila, 2000).

4.2. OPTIMAL PREDICTIVE CONTROL

Let us consider again state model (3) with unknown function ft and still the assumption

of observed Xt.
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Figure 4: Simulation of the bioprocess(6) controlled with the nonparametric adaptive control law.

The principle of the so-called predictive control is now well-known among control theorists

(see for example (Camacho & Bordons, 1995)). The specificity of predictive control is to

consider both the future values of the state system and that of the reference trajectory, in a

near forward horizon of given length H . More precisely at each time step the future values

of the state variables on the horizon are predicted conditionally to intermediary control

values. These control values are then optimized in order to minimize some discrepancy

function between the predicted state values and that of the reference trajectory on the same

horizon. The first of these optimal values of the control variable is then applied to the

system which enters then the following time step and the predictive horizon is translated.

Such an anticipating policy confers to predictive control a significant advantage among on-

line tracking control policies, and is particularly adapted to the control of processes with slow

dynamic such as the biotechnological processes. The main question raised by the predictive

control algorithms is that of the stability of the closed loop. For deterministic systems several

constraint conditions have been designed to ensure this stability (see (Mayne, Rawlings, Rao,

& Scokaert, 2000) for a recent survey). For stochastic system this issue is still open for the

general case. We consider it in the nonparametric approach to follow and solve it in a simple
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case.

NPPC : a nonparametric predictive control algorithm for uncertain system:

At step t,

• let Jt =

j=H∑

j=1

‖X∗
t+j − f j

t+j−1

(
u1, . . . , uj |Xi, i≤t ; Ui, i≤t−1

)
‖2

where

◦ H is the chosen length of the receding horizon

◦ X̂t+j = f j
t+j−1 (u1, . . . , uj | Xi, i≤t ; Ui, i≤t−1) is a consistent estimate to be looked

for E [Xt+j |Xi, i≤t ; Ui, i≤t−1 ; Ut =u1, . . . , Ut+j−1 =uj] which is itself the mini-

mum variance predictor of the state value Xt+j.

• Find Ūt = (U1
t , . . . , UH

t ) = argmin‖u1‖≤M,...,‖uH‖≤M Jt

with M : upper bound constraint in the control values.

• take Ut = U1
t and t = t + 1

A j-step-ahead nonparametric state predictor:

Let Zj
t = (Xt, Ut, . . . , Ut+j−1)

t. Let us consider as estimate of E(Xt+j | Zj
t = z):

X̂t+j = Ê(Xt+j | Zj
t = z) =

∑t−j

i=1 δ
−(s+jm)
i K

(
z−Z

j
i

δi

)
Xi+j

∑t−j

i=1 δ
−(s+jm)
i K

(
z−Z

j
i

δi

) (14)

where K is a kernel of dimension (s + jm).

For uncontrolled processes, the asymptotic behaviour of X̂t+j has been characterized under

mixing conditions and stationarity assumptions (Bosq, 1996). These results are not easily

applicable to the controlled processes we consider in this paper since the applied control

values are state dependent.

However for the simplest case, H = 1, the following important results have been established

(Wagner, 2001; Wagner & Vila, 2001):
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• Let j = 1 in (14). Then X̂t+1 ≡ f̂t, as given by (7).

• Let {ζt} be an observed m-dimensional Gaussian white noise independent of {εt}.

• Let {γt} be a real positive series decreasing to 0 such that

γt = C(log log t)−θ, in which C is a strictly positive constant and θ ∈]0, 1/2[.

• Let Et be a particular subset of the state space, defined from the kernel estimate f̂t

and from f ∗ a prior estimate of ft (see (Wagner, 2001)) and generalizing the similar

subset defined previously in 4.1.

• Let us consider the following one-step-ahead predictive control law:

◦ If Xt ∈ Et : Ut = Ût = argmin||u||<M‖X∗
t+1 − f̂t(Xt, u)‖2 + γtζt (15)

◦ If Xt ∈ Ec
t : Ut = U∗

t = argmin||u||<M‖X∗
t+1 − f ∗

t (Xt, u)‖2 + γtζt (16)

Results : the control law (15)-(16) satisfies the following properties (Wagner, 2001):

1. Stability of the closed loop : the following sufficient condition is satisfied

lim sup
t→∞

1

t + 1

t∑

i=0

‖Xi‖
sup(2, mε

2
) ≤ Cte < ∞ a.s.

2. Almost sure uniform convergence of f̂t to f on dilated compacts

sup
||x,u||≤vt

‖f̂t(x, u) − f(x, u)‖ = o(1) a.s.

for {vt} such that vt = O
(
γt(log log t)

1

2

)
.

3. Sub-optimality of the control

17



• for {ft} such that ft
t→∞
→ f uniformly almost surely

lim sup
n→∞

1

n

n∑

i=1

‖ Xi+1 − X∗
i+1 ‖

2 ≤ Tr(Γ)

+ lim sup
n→∞

1

n

n∑

i=1

‖ f̂i(Xi, Ûi) − X∗
i+1 ‖

2 1lEi
(Xi)

+ lim sup
n→∞

1

n

n∑

i=1

‖ f ∗(Xi, U
∗
i ) − X∗

i+1 ‖
2 1lEc

i
(Xi)

• for i.i.d. {ft} such that E[ft] = f

lim sup
n→∞

1

n

n∑

i=1

‖ Xi+1 − X∗
i+1 ‖

2 ≤ Tr(Γ)

+
[
lim sup

n→∞
{

1

n

n∑

i=1

‖ f̂i(Xi, Ûi) − X∗
i+1 ‖

2 1lEi
(Xi)}

1

2 + (E(‖ f1 − f ‖2
∞))

1

2

]2

+ lim sup
n→∞

1

n

n∑

i=1

‖ f ∗(Xi, U
∗
i ) − X∗

i+1 ‖
2 1lEc

i
(Xi).

As it could have been expected, the effect of the stationary stochastic variability of {ft}

in the case of i.i.d. {ft} increases the upper bound of the asymptotic mean squared error,

with respect to the case of converging {ft}.

Remark 1: the introduction of the prior information f ∗ about the unknown f and that

of the decreasing stochastic excitation γtζt into the one-step-ahead predictive control law

(15)-(16), have only a theoretical interest to prove the stability of the closed loop and then

the almost sure uniform convergence of f̂f to f . All the real case studies we performed in

different control situations showed that these factors have no practical importance and can

be ignored in practice by taking simply for all t

Ut = Ût = argmin||u||<M‖X∗
t+1 − f̂t(Xt, u)‖2. (17)

Remark 2: again, for H ≥ 2, the general algorithm NPPC coupled with the nonparametric

state predictor (14) performed satisfactorily on all the case studies considered, even if its

theoretical statistical properties have not been characterized.
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Remark 3: the minimization of the criterion function Jt at step t of the algorithm NPPC with

respect to the constrained control variables (u1, · · · , uH), can be done by standard descent

algorithm. We developed also a more efficient neural network-based minimization procedure

and applied it online on a real biotechnological depollution process (Vila & Wagner, 2003).

Remark 4: the choice of the length of the predictive horizon H must result from a case by

case compromise between long term optimality of the predictive control (high values for H)

and the quality of the kernel predictors (low values).

Application

Let us considered again the case of the generic single biomass / single substrate biotech-

nological process given by (6), which enters model (3) with

Xt =



 Bt

St



 , Ut: dilution rate, ft(Xt, Ut) =



 (1 + T (µt − Ut))X
(1)
t

X
(2)
t − TµtX

(1)
t /τ + Ut(Sin − X

(2)
t )T



 .

The process was simulated with the same setting as in section 3.1. . The simulation was

carried on L = 900 time steps of 1h, starting from B0 = 40mg.l−1, S0 = 20mg.l−1.

The reference substrate trajectory S∗ to be followed by the process was given by a step

function varying between 22 and 30mg/l.

In order to test the performance of the NPPC algorithm several predictive control strategies

have been computed for different values of the predictive horizon H , under the hypothesis

that model function ft(Xt, Ut) was completely unknown with state predictions computed

according to (14).

Results: the residual sum of squares (RSS) between the reference and controlled trajectories

have been computed for 10 simulation runs for H = 1, . . . , 10:

Horizon H 1 2 3 4 5 6 7 8 9 10

RSS 283.23 253.29 248.21 234.26 236.93 232.47 223.89 220.68 233.76 236.19

In order to assess the efficiency of the NPPC algorithm, the same control processing simu-

lations were carried on under the hypothesis of a full knowledge of the process model ft. In
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that case, the j-step-ahead predictor has been computed by the deterministic recurrence

X̂t+j = ft+j−1(X̂t+j−1, Ut+j−1) (18)

leading to the following results:

Horizon H 1 2 3 4 5 6 7 8 9 10

RSS 276.74 264.12 219.12 216.56 192.26 159.53 148.98 183.86 120.86 214.91

Comments

◦ As expected, when H increases the tendency of the RSS is to decrease. However

the lower efficiency of the nonparametric predictor (14) and that of the deterministic

recurrence predictor (18) as j increases, disturb this trend.

◦ A comparison of the two arrays reveals that the nonparametric prediction and control

approach is able to retrieve most of the information supplied by the full knowledge of

the model function ft.

5. CONCLUSION AND PERSPECTIVES: TOWARDS THE NONPARAMETRIC SU-

PERVISION OF UNCERTAIN SYSTEMS

When dealing with process control, an unavoidable issue is that of supervision. Super-

vision involves being able to detect any default in the process (e.g. pump clogging in a

bioprocess), locating the default and remedying it (by an appropriate sequence of actions).

From a statistical point of view, the problems of detection and isolation of a default are equiv-

alent to detecting abrupt changes in a stochastic process, and testing multiple hypotheses to

determine the faulty scenario among a number of possible scenarii of defaults (Dubuisson,

2001).

There exist many statistical procedures to answer such questions, see (Basseville & Niki-

forov, 1993). A well-known one is the CuSum test. It is based on a comparison, at each

time instant, of the difference between the log-likelihood ratio value and its current minimal

value, with respect to a fixed threshold. Most of these techniques require knowledge of both

state and observation models.
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When the state model is uncertain, the question is still open. However combining non-

parametric estimates as (7) or (8) with classical test procedures gave us encouraging results

on real experimental data issued from a depollution process (Hilgert, Verdier, & Vila, 2006).

Moreover, introducing filtering methods such as the one proposed above, will allow to

generalize these nonparametric detection procedures to the most frequent situation of indi-

rectly observed systems described by models (1) and (2).
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linéaire à temps discret et à paramètres inconnus. C. R. Acad. Sci. Paris, Ser. I 340,

759–764.

Vieu, P. (1991). Nonparametric regression: optimal local bandwidth choice. J. R. Statist.

Soc. B, 453–464.

Vila, J.-P., & Wagner, V. (2003). Predictive neuro-control of uncertain systems: design and

use of a neuro-optimizer. Automatica, 767–777.

Wagner, V. (2001). Identification non paramétrique et contrôle prédictif neuronal de pro-
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