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2CIRAD, UMR ‘Ecologie des Forêts deGuyane’, 97 379KourouCedex, France

Summary

1. Reliable above-ground biomass (AGB) estimates are required for studies of carbon fluxes and stocks. How-

ever, there is a huge lack of knowledge concerning the precision of AGB estimates and the sources of this uncer-

tainty. At the tree level, the tree height is predicted using the tree diameter at breast height (DBH) and a height

sub-model. The wood-specific gravity (WSG) is predicted with taxonomic information and a WSG sub-model.

The treemass is predicted using the predicted height, the predictedWSGand the biomass sub-model.

2. Our models were inferred with Bayesian methods and the uncertainty propagated with a Monte Carlo

scheme. The uncertainties in the predictions of tree height, tree WSG and tree mass were neglected sequentially

to quantify their contributions to the uncertainty in AGB. The study was conducted in French Guiana where

long-term research on forest ecosystems provided an outstanding data collection on tree height, tree dynamics,

treemass and speciesWSG.

3. We found that the uncertainty in the AGB estimates was found to derive primarily from the biomass

sub-model. The models used to predict the tree heights and WSG contributed negligible uncertainty to the final

estimate.

4. Considering our results, a poor knowledge of WSG and the height–diameter relationship does not increase

the uncertainty in AGB estimates. However, it could lead to bias. Therefore, models and databases should be

usedwith care.

5. This study provides a methodological framework that can be broadly used by foresters and plant ecologist. It

provides the accurate confidence intervals associated with forest AGB estimates made from inventory data.

When estimating region-scale AGB values (through spatial interpolation, spatial modelling or satellite signal

treatment), the uncertainty of the forest AGB value in the reference forest plots has to be taken in account. We

believe that in the light of the Reducing Emissions fromDeforestation and Degradation debate, our method is a

crucial step inmonitoring carbon stocks and their spatio-temporal evolution.
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Introduction

Tropical forests are a large planetary carbon stock, with

40% of the Earth’s total carbon stored in the terrestrial

vegetation [from 158 to 324 Pg (Gibbs et al. 2007)]. Tropi-

cal forests are also a dynamic stock for carbon through

land-use change (emissions 1�3 ± 0�7 Pg year�1) and re-

growth (1�6 ± 0�5 Pg year�1) (Pan et al. 2011). Preservation

of this major carbon stock and the important role that

forest ecosystems play in mitigating climate change are

now fully recognized through the elaboration of mecha-

nisms like Reducing Emissions from Deforestation and

Degradation (REDD). An important challenge facing ecol-

ogists and foresters is to quantify as precisely as possible

the carbon stocks and their fluxes at different spatial scales

(Baker et al. 2010). However, considerable uncertainty

about these figures remains.

Considerable efforts have recently been made to develop

new tools to monitor tropical forest carbon stocks using an

aerial approach (Goetz et al. 2009), together with new models

of carbon estimation from tree measurements (Chave et al.

2005). Although uncertainty has been studied at the world

scale (Pan et al. 2011; Saatchi et al. 2011), the uncertainty

associated with tropical inventory data has rarely been

explored (but see Chave et al. 2005). The above-ground bio-

mass (AGB) of inventoried forest plots is estimated with tree-

level models applied to forest inventory data. Exploring the

uncertainty of AGB estimates made from tree data is essential

for two reasons. First, uncertainty data are required to com-

pare the spatial and temporal distributions of AGB. Second,

the data obtained with aerial techniques must be calibrated

against some reference inventory plots (Daniel et al. 2010;

Dubois-Fernandez et al. 2010). Therefore, it is necessary to*Correspondence author. E-mail: quentin.molto@ecofog.gf
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have unbiased AGB estimates for these plots and to quantify

the uncertainties of these estimates. The AGB values in these

reference inventory plots may have broad uncertainties. It is

important to take this uncertainty in account when building

spatial inference models. The 2000 IPCC (Intergovernmental

Panel on Climate Change) report entitled ‘Good Practice

Guidance and Uncertainty Management in National Green-

houseGas Inventories’ (IPCC 2000) points out the necessity of

explicitly propagating uncertainties. In the study, we provide a

method to estimate AGB from inventory data while propagat-

ing uncertainty.

Inventory data consist of the diameters at breast height

(DBHs) and some taxonomic information for all the trees in a

precisely known area. Sometimes, tree heights are measured in

the inventoried area or in part of it. Predicting the mass of a

tree requires a physical model that roughly approximates the

tree to a cone, which in turn requires that its DBH, height and

wood-specific gravity (WSG) are known. The gap between the

inventory data and the physical model is overcome by using

three sub-models. The height sub-model predicts the height

of a tree from its DBH. The WSG sub-model predicts

the WSG of a tree from taxonomic information. The AGB

sub-model predicts the mass of each tree using its DBH, height

and WSG (Fig. 1). The usual practice is to apply the three

sub-models sequentially: the deterministic outputs of the

height sub-model and the WSG sub-model are used as the

inputs for theAGB sub-model.

These sub-models have already been examined (Chave et al.

2004; Feldpausch et al. 2011; Flores & Coomes 2011) in

attempts to determine the best ones to apply in different cases.

Chave et al. (2005) explored different sources of uncertainty in

AGB estimates. However, past studies have focused on the

sub-models themselves, assuming that the AGB model could

be significantly improved with the improvement of its compo-

nents. This assumption has yet to be studied by quantifying the

parts of the AGB uncertainty that can be attributed to each

sub-model.

We stress that the height sub-model, the WSG sub-model

and the AGB sub-model (sometimes called ‘AGB allometry’)

must be integrated as the components of a uniqueAGBmodel.

In the present study, we inferred the sub-model parameters

with Bayesian numerical methods. The uncertainty contrib-

uted by the sub-models was propagated until the final AGB

estimate was achieved.

The method is illustrated with data collected at Paracou, a

long established set of permanent plots in a moist tropical

forest in French Guiana. A full set of data is available (WSG,

tree girth and height measurements) for this site and has

already been used to estimate the carbon stocks and their fluxes

in a natural forest (Rutishauser et al. 2010) and a logged forest

(Blanc et al. 2009). This site was selected to provide feedback

on the performances of P-band Synthetic Aperture Radar

when it was used to measure the biomass and canopy height of

a tropical forest with high-biomass stocks (Daniel et al. 2010;

Dubois-Fernandez et al. 2010).

The objectives of this study were (1) to propose a generic

method that identifies the uncertainties associated with AGB

estimates based on error propagation; (2) to apply this method

to the FrenchGuiana data; (3) tomake practical recommenda-

tions to guide foresters and ecologists in producing the most

preciseAGB estimates.

Materials andmethods

DATA

All the data were collected in FrenchGuiana. The climate of the region

is equatorial, with twomain seasons: a dry season fromAugust to mid-

November and a rainy season (often interruptedby a short drier period)

fromDecember toApril (Gourlet-Fleury,Guehl&Laroussinie 2004).

Census data

The census data were for a 6�25 ha plot (plot 11) at the Paracou site in

French Guiana (5°11′80″N, 52°12′30″W) (Gourlet-Fleury, Guehl &

Laroussinie 2004). The site was established to study the responses to

different logging intensities. In each plot, the diameter of trees (DBH)

wasmeasured at breast height (1�3 m) and above the buttresses if neces-

sary. All stems with DBH > 10 cm were mapped, tagged and mea-

sured biannually. In the present study, the biomass estimation method

was applied to the unlogged inventory plots. We knew the diameter

and some taxonomic information for each of the 3992 trees. TheDBHs

ranged from 10 to 105 cm. Taxonomic information was available to

the species level for 76%of the trees.

WSGdata

The data were collected during the Bridge Project (Baraloto et al. 2010;

Sarmiento et al. 2011). WSG is defined here as the mass (in grams) of

an oven-dried sample divided by its green volume (in cm3) divided by

the density of water (in grams per cm3) (Chave et al. 2006; Williamson

& Wiemann 2010). The sample cores were 6 mm long, and therefore

contained sapwood only. We do not assume these WSG measures to

represent the WSG of the whole tree volume; we use them as statistical

predictors of the tree AGB. The specific gravity of the sapwood had

been measured for 2504 trees in French Guiana, representing 466 spe-

cies in 201 genera in 56 families. The number of measurements made

for each species ranged from 1 (107 species) to 50 (Lecythis persistens);

100 species have eight ormoremeasures.

Height data

Weused data collected at the Paracou site. Height andDBHweremea-

sured in 1603 trees. DBH ranged from 10 to 172 cm and height ranged

from 4 to 47 m.Fig. 1. Biomass estimation process at the forest plot scale.

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution

2 Q. Molto, V. Rossi & L. Blanc



Mass data

The data were collected in 1972 during the ECEREX Project (Lescure

et al. 1983). Three hundred and sixty-one trees were cut down on a

1 ha plot in French Guyana. The trees had been selected to include a

range of diameters and heights. Themass, DBH and height of each tree

were measured along with some taxonomic information. The DBHs

ranged from 5 to 118 cm, the heights from 2�7 to 47 m and the masses

from 3�6 kg to 25 500 kg. The biggest trees were not actually weighed

but their masses were extrapolated from trunk, branches and crown

samples, and precise volumes (Lescure et al. 1983). The taxonomic

informationwas known up to the species level (260 trees).

SUB-MODEL DEFINIT IONS

Height sub-model

The role of the height sub-model is to predict the height of the trees from

their diameters (Fig. 1). The height model is only used for biomass pre-

dictions.Measuring the heights of harvested trees presents no problem,

althoughmeasuring standing trees does. Height–diameter relationships

have long been studied for temperate forest species (Huang, Titus &

Wiens 1992). Because of the huge species richness, a species-specific

height model would require huge, unavailable data sets to be inferred.

Very few global heightmodels have been published (Brown,Gillepsie&

Lugo 1989; Feldpausch et al. 2011).After considering aWeibullmodel,

Feldspausch et al. recommended the log–log model. After comparing

four different model shapes (see Supporting Information), we chose the

Michaelis–Menten one: logðHiÞ ¼ logða �DBHi=ðbþDBHiÞÞ
þei; ei �Nð0;r2Þ,where e represents the error of the model, assumed

to be normally distributed (Eqn. 1).

WSGsub-model (Fig. 2)

The role of theWSGmodel is to provide theWSGdistribution for each

tree, based on its species (Fig. 1). The WSG prediction is usually a

deterministic call in a database. This is not appropriate in our study

because our goal was to account for the variance in AGB. Our WSG

sub-model explicitly accounts for theWSG variance within species.We

assumed that for each species, the WSG has a truncated normal distri-

bution. The distribution is truncated for physical realism so the wood

density cannot be lower than 0�15 or higher than 1�3. The precision of

the normal distribution follows a gamma distribution G(r, s). At this

level, the species were weighted by their numbers of measures. Species

with a higher number of measures, and therefore a more reliable vari-

ance estimate, were given greater weight. This hierarchical structure

based on the precision parameter allows meaningful estimates for spe-

cies with very fewmeasures.

In our predictions, the species of some trees was unknown or the spe-

cies was not recorded in the WSG data set. Such trees were given a

WSG distribution compiled from a mixture of the WSG distributions

of all the known trees of the forest plot.

Biomass sub-model

The response variable was the fresh mass of the tree (kg). Different bio-

mass models have been published and compared (Brown 1997; Araujo,

Higuchi & Junior 1999; Chave et al. 2005). These models are generally

built upon the mechanistic mass of a cylinder with the height, diameter

and WSG of the tree (Fig. 1), and some statistical corrections. The

equation is log-transformed to achieve linearity. Some authors have

chosen not to use these three predictive variables because tree height

andWSG are difficult to obtain at the inventory scale (Ketterings et al.

2001; Chave et al. 2005; Pilli, Anfodillo & Carrer 2006). We preferred

to include them all and deal explicitly with missing data.We have given

each variable its own coefficient to allow for any deviation from the

mechanistic model: logðAGBiÞ ¼ b0 þ b1logðDBHiÞ þ b2logðHiÞ
þb3logðWSGiÞ þ �i; �i �Nð0;r2Þ,where e is the error term of the

model, assumed to be normally distributed (Eqn. 2).

When inferring parameters b0, b1 , b2, b3, and r2, WSGi is predicted

from taxonomic information and is therefore uncertain. DBHi,Hi, and

the tree species are directly obtained from the harvested trees.

When predicting the biomass of standing trees, both WSG and

height were predicted with their corresponding sub-models. DBH was

measured and the species identified on the living trees.

SUB-MODELS INFERENCE

Bayesianmethods

In the Bayesian paradigm, the parameter inference consists of updating

the prior knowledge on the parameter from the data, generating the

posterior distribution of the parameter. The parameter posterior distri-

bution of the three models was inferred with numerical Bayesian meth-

ods (Monte Carlo Markov chain algorithms) (Gelman et al. 2003).

These methods produce a sequence of values for each parameter, called

a ‘chain’, which converges to the parameter posterior distribution.

Once algorithm convergence is achieved, it is also said that the chain

has reached its ‘stationary state’, and the values of the chain constitute

a sample of the parameter posterior distribution.

The first iterations are discarded to ensure that the chain has reached

the stationary state. Because the values of the chain could be correlated,

we used a thinning procedure to produce a 1000 quasi-independent

samples from the posterior distribution of each parameter.

Height sub-model

The parameters were estimated with Metropolis and Gibbs’ algorithm

(Gelman et al. 2003).

WSGsub-model

Two parameters were estimated for each species. The mean parameter

µs has an improper prior. The variance parameter r2
s follows a IG(r,s)

Fig. 2. Directed acyclic graph of the wood-specific gravity sub-model.

WSGs,t is the wood-specific gravity of tree t of species s; µs is the mean

parameter of species s; rs is the variance parameter of species s. At a

higher level, r and s are the parameters of the gamma distribution of all

thers values. µ0, s0, and r0 are low-informative priors of their respective

parameters.
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distribution, and r and s have low-informative priors N[0 + ∞](0, 10
6).

The posterior distributions of the parameters were estimated with the

Metropolis–Hasting algorithm. The truncature introduced for physical

reasons on the WSG distribution N[0�15,1�3](µs, r2
s ) also helps the algo-

rithm convergence by forcing him to explore physically realist values.

Data were introduced sequentially, starting with the species with the

highest weights (more than 10 measures). This helped the chains to

reach their stationary states by avoiding some local minima. After 5000

iterations, the remaining data were introduced. Finally, for each

parameter, we retained one value each for 70 of the last 70 000 itera-

tions to reduce the autocorrelation between them. After this thinning,

we obtained 1000 quasi-independent samples of the posterior distribu-

tions of the parameters (Fig. 3). The algorithm details are given in

Appendix S1.

Biomass sub-model

The parameters of the AGB model were estimated with Gibbs’ algo-

rithm, using noninformative priors. For each tree in the mass data set,

we generated 1000 samples from the WSG posterior distributions of

the WSG model parameters. At each step of Gibbs’ algorithm, a sam-

ple from theWSG distribution for each tree was randomly chosen. See

Appendix S3 for details of the algorithm.

BIOMASS PREDICTION

The biomass of a tree was predicted with a Monte Carlo scheme from

the posterior distribution of the model parameters. For each tree, we

generated:

1000 samples from its WSG distribution, using the WSG sub-model

with parameters associated with the tree species. If the tree species is

not known, the parameters are sampled from a mixture of the WSG

distributions of all the trees in the forest plot. The truncature on [0�15,
1�3] of the WSG distribution ensure that the sampled values are

realistic.

Thousand samples from its height distribution, using the Height

sub-model and its DBH.

Thousand samples from its AGB distribution, using the AGB sub-

model its DBH and each sample from its WSG distribution, and its

height distribution.

This protocol was applied to the 3992 trees in the forest plot. Samples

from the plot biomass distribution were obtained by summing themass

of each tree. This mass was converted into tonnes per hectare, the usual

units. We can calculate any information from the predictive distribu-

tion of the plot biomass, such as themean, quantiles or credibility inter-

val (Table 3).

QUANTIF ICATION OF THE ERROR SOURCES

The prediction of the AGB of the forest plot was based on three

sub-models: the height sub-model, the WSG sub-model and the AGB

sub-model. These three sub-models were sources of uncertainty in the

estimation of the plot AGB. To quantify the uncertainty each sub-

model contributed to the AGB estimates, each was considered as deter-

ministic, one at a time.

To consider a model deterministic, its parameters were replaced by

their expected values computed from their chains as the mean of 1000

values. We then examined the changes in the biomass prediction distri-

butions, for both the trees and the forest plot (Table 3, Fig. 4).

When a model is considered deterministic, the uncertainty it brings

to the biomass estimate disappears. This causes the AGB uncertainty

to decrease. We used this decrease to quantify the part of the AGB

uncertainty that could be ascribed to thatmodel.

Results

MODEL PARAMETER VALUES

Height sub-model

The height (Table 1) model was calibrated on a local data set

and thus cannot be used for other tropical sites. Because many

authors have found site and environmental effects in tree

(a1)

(a2)

(b1)

(b2)

Fig. 3. Posterior distributions of theWSGmodel parameters for two species, plus theWSGdistribution simulated from these parameters. a:Andira

inermis (onemeasure only); b:Carapa procera (27measures): 1, mean parameter ; 2, variance parameter . Dashed line: prior distribution.
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height modelling (Feldpausch et al. 2011; Lines et al. 2012),

we believe that it is always better to use localmodels.

WSGsub-model

The posterior distributions for µs (mean parameter) and rs

(variance parameter) were sampled for the 463 species of the

data set (Fig. 3). If the number of observations is low (e.g.

Andira inermis, Fig. 3), the variance parameter distribution is

the same as the hierarchical prior distribution. If the number of

observations is high (e.g. Andira inermis, Fig. 3), the model

allows deviations from the prior. As expected, the predicted

WSG of each species was centred on the mean of the observed

values.

AGB sub-model

The posterior values of the AGB model coefficients are given

in Table 2. Under our conditions, the WSG signal was weak

(coefficient value: 0�198). Previous studies have foundWSG to

be a key predictor of AGB at the tree level or have chosen to

fix the coefficient value to 1 for physical reasons (Chave et al.

2005). This difference is certainly attributable to the fact that

WSG uncertainty was taken into account in inferring the AGB

sub-model parameters.

The parameter posterior values (Table 2) were very close to

Chave’s values (Chave et al. 2005), especially the error param-

eter (Chave et al. 2005: RSE = 0.302; present model:

1=
ffiffiffi
s

p ¼ 0:323Þ.

AGB value

Using the previous models, we predicted the AGB for individ-

ual trees and for the forest plot (Table 3). The final biomass

estimate for the forest plot was 451Mg ha�1, with a credibility

interval of [441, 461]. This estimate is slightly higher than previ-

ous estimates [421 Mg ha�1 in 2007; (Chave et al. 2005; Goetz

et al. 2009)]. We believe our estimate to be more accurate

because we used local models only, rather than pan-tropical

equations.

It should be noted that theAGBof a surface is the sumof the

AGBs of the trees on that surface. Therefore, the variance in

the AGB of the surface is the sum of the variances of the trees.

As the surface increases, the variance increases as an absolute

value inMg, but decreases as a relative value inMg ha�1.

Identification of error sources

The AGB of the P11 plot at Paracou, with all error sources

taken in account, was 451 Mg ha�1. The Bayesian 95% credi-

bility interval around this estimate had a range of 20 Mg ha�1

(±2�2%). This range was compared with the range of the credi-

bility intervals of the AGB estimates when one sub-model was

considered deterministic.

When the height model was considered deterministic, the

credibility interval range was similar: 19 Mg ha�1. Therefore,

Fig. 4. Boxplot of the AGB posterior distribution for three trees

(described in Table 3) and for the 6�25 ha Paracou forest plot P11.

Table 1. Posterior distributions of the height model parameters

logðHiÞ ¼ logða �DBHi=bþDBHiÞ þ ei; ei �Nð0;r2Þ.

Parameter Median CI

a 40�3 38�8, 42�1
b 9�43 9�77, 9�68
τ = 1/r2 27�6 24�6, 30�6

Table 2. Posterior distributions of the biomass model parame-

ters logðAGBiÞ ¼ b0 þ b1logðDBHiÞ þ b2logðHiÞ þ b3logðWSGiÞ
þei; ei �Nð0;r2Þ.

Parameter Median CI

b0 �2�91 �3�12,�2�69
b1 2�19 2�07, 2�31
b2 0�756 0�604, 0�92
b3 0�187 �0�0149, 0�381
τ = 1/r2 9�79 8�31, 11�3
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the height sub-model contributed no uncertainty to the AGB

estimate.

When the WSG model was considered deterministic, the

credibility interval range was also similar: 20 Mg ha�1. There-

fore, the WSG model contributed no uncertainty to the AGB

estimate.

When theAGB sub-model was considered deterministic, the

credibility interval rangewas narrower: 6 Mg ha�1. Therefore,

the AGB sub-model is the model that contributed the largest

part of the uncertainty in theAGB estimate.

Discussion

ERROR PROPAGATION

Using a statistical model for prediction makes that prediction

uncertain. This uncertainty has different sources:

Measurement error

When collecting data, measurements are more or less repeat-

able. The distribution of repeated measures around a ‘true

value’ is the measurement error. When a measured variable is

used to infer a model, this error is part of the error term of the

model. We did not quantify the part of the error model that

derived from the measurement error, but a previous study

found it to be negligible (Chave et al. 2004).

Prediction error

When a model is used for prediction, the predicted values are

uncertain. This uncertainty comes from (1) the model itself,

through its error term and the uncertainty of its parameters

and (2) the uncertainty of the other variables used in themodel.

These prediction errors are our great concern because they are

often disregarded. Whereas it is quite natural to propagate

these uncertainties in a Monte Carlo environment, the process

usually makes the computation more complex (but not impos-

sible; see for example (Gourlet-Fleury et al. 2011). The IPCC

recommend the use of the Monte Carlo scheme when required

(IPCC 2000).

Here, we identified the AGB sub-model as the main source

of error in the prediction of AGB, but we did not explore the

uncertainty sources inside it: measurement errors or the natu-

ral diversity among the trees. However, because measuring

harvested trees is not difficult, we can hypothesize that the

measurement error is only a tiny part of the AGB sub-model

error.

CONSEQUENCES AND RECOMMENDATIONS

On variance

When focusing on the precision ofAGB estimation, it is unnec-

essary to improve the quality of the WSG or height

sub-models. The actual basic models are precise enough

compared with theAGB sub-model.T
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The only way to improve the precision of the AGB predic-

tions is to improve the precision of the AGB sub-model. Add-

ing more trees to the calibration data may be a way to improve

the precision of themodel.However, therewill always be diver-

sity in AGB among trees of the same height, DBH and WSG.

Because our error term in the AGBmodel is the same as those

found previously for large data sets (Chave et al. 2005:

RSE = 0�302; present model: 1=
ffiffiffi
s

p ¼ 0 � 323), we strongly

believe that we had already reached the limit.

Another way to improve the precision of the AGB predic-

tions could be to change theAGB sub-model, adding new vari-

ables to explain the residual variance. Variables that extend

our knowledge of the tree volume (such as trunk taper, diame-

ters at various heights, crown size, etc.) or tree density (WSG

measured along the trunk, at all depths, etc.) would increase

the precision of the model. However, the AGB model is used

on large inventory data sets. If it requires too much data to be

measured in the field, it will not be useful.

ON BIAS

Bias introduced by the sampling strategy

First, the trees used to infer the model parameters must be rep-

resentative of the trees whose AGB, height andWSG are to be

predicted. For this reason, we used only local data sets. Our

models work best around the site at Paracou, where the height

and weight data were collected. This point has already been

addressed (Chave et al. 2005; Goetz et al. 2009), but has not

been identified as a source of bias.

Second, models should never be used outside their domains

of definition. This happens when, for example, we predict the

height of a tree with a higher DBH than any tree in the height

calibration data set. Because the behaviour of the model out-

side its range of definition has not been calibrated against the

data, predictions outside this range may be biased. This can be

corrected by extending the range of the calibration data sets.

Measuring the heights and weights of the largest trees should

make us more confident of the mass predictions for very large

trees.

Bias frompredictive variables

Bias is a deviation of the expected value of a variable from its

definition. This definition is not a physical or biological defini-

tion, although it should be close. The definitions of the vari-

ables are chosen with the calibration data set. Once the models

are inferred, the definitions of the variables must remain abso-

lutely immutable.

If, during the prediction, a variable does not have the same

expected value that it would have had in the calibration

data set, it is biased. A biased variable at this stage creates

bias in the AGB estimate. The bias pAGB% in the AGB esti-

mate induced by a bias of px% in the predictive variable X

associated with a coefficient bx can be calculated with the

formula: pAGB ¼ ð1þ px
100Þbx � 1

� �
� 100

We calculated pAGB for the three predictive variables (WSG,

DBH and H) and for six values of px (�10%, �5%, �2%,

+2%, +5%, +10%). The results are given in Table 4.

Diameter

The DBH variable is the most standard variable in forest

inventory data. In the AGB calibration data set, it is necessary

to measure the diameter with respect to the inventory proce-

dure. In this way, no bias can occur. DBH is the predictive var-

iable that is most sensitive to bias (Table 4) because it has the

highest coefficient (Table 2).

Height

In the AGB data set, height is easily measured after the tree is

harvested. Therefore, this height definition is used in the bio-

mass model, and this height must be the objective when height

is measured in the field. Bias occurs if the height measured in

the field differs from this definition. In Table 4, we see that a

bias of 2%–5% in height creates a bias that can force the AGB

estimate outside its confidence interval. A comparison of

height measurements with different methods and on harvested

trees should be enlightening.

Wood-specific gravity

In Table 4, we see that our model is not very sensitive toWSG

bias. This derives from the low value of the coefficient

(Table 2). Models with different coefficient values would have

different sensitivities toWSG bias. For example, some authors

fixed the WSG coefficient to one for physical reasons (Chave

et al. 2005). In this case, the bias induced in the AGB predic-

tion was the same as the bias inWSG.

The definition of WSG and the measurement methods used

have been widely discussed in the literature. A consensus seems

to have emerged for WSG [oven-dried mass (72 h at 104 °C)
divided by green volume]. Other measurements can be con-

verted to WSG with various formulae (Muller-Landau 2004;

Chave et al. 2009).

The definition of ‘wood sample’ is also contentious. It seems

difficult to argue that one definition is better than another, but

because there is evidence for large within-individual variations

(Parolin 2002; Woodcock & Shier 2002; Williamson &

Wiemann 2010), it seems a bad idea to mix different sampling

methods.

Again, the most important point is consistency. The defini-

tion of a variable must remain the same in every data set, from

the calibration of the model to its use in prediction. If neces-

sary, variables can be corrected to avoid bias. Note that these

corrections are additional models that can also contribute

uncertainty.

Conclusion

In this study, we have proposed a method to quantify uncer-

tainty and identify its sources in biomass estimation. The most

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution

Biomass uncertainty estimation 7



important source is the biomass sub-model, and the other

sources are negligible. New heightmodels or newWSGmodel-

ling methods, even if better than previous ones, will not neces-

sarily improve the quality of carbon stock assessments. This

study provides a methodological framework that can be

broadly used by foresters and plant ecologist to provide accu-

rate confidence intervals for tree biomass estimates from inven-

tory data. This method can also be applied at the regional scale

with error propagation. We believe that in the light of the

REDD debate, such a method is a crucial step in accurately

monitoring carbon stocks and their spatio-temporal evolution.
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