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a b s t r a c t

The high species diversity of some ecosystems like tropical rainforests goes in pair with the scarcity of data
for most species. This hinders the development of models that require enough data for fitting. The solution
commonly adopted by modellers consists in grouping species to form more sizeable data sets. Classical
methods for grouping species such as hierarchical cluster analysis do not take account of the variability
of the species characteristics used for clustering. In this study a clustering method based on aggregation
theory is presented. It takes account of the variability of species characteristics by searching for the
grouping that minimizes the quadratic error (square bias plus variance) of some model’s prediction. This
pecies grouping
pecies richness
ropical rainforest
sher model

method allows one to check whether the gain in variance brought by data pooling compensate for the
bias that it introduces. This method was applied to a data set on 94 tree species in a tropical rainforest in
French Guiana, using a Usher matrix model to predict species dynamics. An optimal trade-off between
bias and variance was found when grouping species. Grouping species appeared to decrease the quadratic
error, except when the number of groups was very small. This clustering method yielded species groups
similar to those of the hierarchical cluster analysis using Ward’s method when variance was small, that

oups
is when the number of gr

. Introduction

The high species diversity of some terrestrial or sea ecosystems
uch as tropical rain forests or coral reefs has raised many ques-
ions about their functioning (Hubbell and Foster, 1986; Hubbell,
997; Whitmore, 1998). Ecologists have tried to simplify this diver-
ity by assigning species to functional groups, i.e. groups of species
hat have the same functions in the ecosystem (Díaz and Cabido,
997; Köhler et al., 2000; Fonseca and Ganade, 2001; Baker et al.,
003; Mcgill et al., 2006). Even if marked patterns such as the
ichotomy between pioneers and climax species in tropical rain
orests have been identified (Swaine and Whitmore, 1988; Baker
t al., 2003), the definition of functional groups has remained an
naccessible Holy Grail, the distribution of species along functional
radients always being continuous rather than discrete. To build
unctional groups, ecologists typically grouped species on the basis
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

f their similarity with respect to ecological characteristic or func-
ional traits (Gourlet-Fleury et al., 2005). The methods used to group
pecies were mainly cluster analysis, when they were not simply
n educated guess.
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People interested in the modelling of the dynamics of species-
rich ecosystem have also paid attention to the grouping of species.
The motivation of modellers was basically not to find functional
groups, but rather to compensate for the scarcity of data for the less
abundant species, that are also the most numerous. The scarcity of
data for these rare species prevented from estimating the parame-
ters of the models of population dynamics with enough precision.
By pooling species, more sizeable data sets could be formed and
reliable parameter estimates could be obtained. Despite this moti-
vation, modellers have mainly stuck to the paradigm of functional
groups, i.e. the grouping of species was made on the basis of
their similarity with respect to their characteristics (Köhler and
Huth, 1998; Köhler et al., 2000). Often the groups of species were
built independently from the model of population dynamics (e.g.
Favrichon, 1998). Sometimes the building of the groups of species
was linked to the model of population dynamics, the grouping being
based on the residuals of the model (Vanclay, 1991a, 1992; Gourlet-
Fleury and Houllier, 2000).

When pooling species into a group, the number of available
observations increases and thus the variance of the estimators of
model parameters decreases. But at the same time, an estimation
bias is introduced since the values of the parameters for a given
a model of population dynamics and aggregation theory. Ecol. Model.

species are confounded with those of the group. The wider the
group is, the larger the bias is and the smaller the variance is. The
bias vanishes when each group is a singleton restricted to a single
species, but the variance is then maximum. To assess the interest
of a species grouping from the modeller’s point of view, it is thus
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ecessary to compute the quadratic error that results from the
roups, where the quadratic error is the square bias plus variance.

This study aims at assessing the interest of groups of species
rom the modeller’s point of view, i.e. on the basis of the quadratic
rror on model’s predictions that it brings. The null grouping
s when there are as many groups as species and each group
dentifies with a species (in other words, no effective grouping
s made). A grouping of species will be considered as justified
f it brings a lower quadratic error than the null grouping. The
uadratic error will be interpreted as a disaggregation error in the
ontext of aggregation theory. Aggregation theory deals with the
rror implied when shifting the level of description of a system
rom a detailed level to an aggregated less-detailed level (Iwasa
t al., 1987, 1989; Ritchie and Hann, 1997). In the present case,
he aggregation consists in replacing s species with g groups of
pecies. Once the disaggregation error is defined, a method for
efining groups of species follows by searching, for a given num-
er g of groups, the grouping that minimizes the disaggregation
rror.

In this study, we presented a general framework useable with
ny model of population dynamics. We then applied the group-
ng strategy to 94 well represented tree species of a tropical rain
orest in French Guiana. We chose to use a matrix model for size-
tructured populations to model population dynamics, and we
ddressed three questions: (i) How to build the disaggregation
rror? (ii) Is there a statistical interest to build groups, compared to
ull grouping? (iii) What happens if the groups are built according
o a different strategy, either using the same model of popula-
ion dynamics (groups of Favrichon, 1994, resulting from a cluster
nalysis), or using a different model (groups of Gourlet-Fleury and
oullier, 2000)?

. Materials and methods

.1. Aggregation theory

.1.1. Aggregation diagram
Let s be the number of species. For each species k ∈ {1, . . . , s},

k observations X1k, . . ., Xnkk are available. Each observation is
onsidered as a random variable drawn from a distribution Fk(�k)
hat depends on unknown parameters �k. These parameters are
hose of the model of population dynamics. Expectations and vari-
nces will refer to the distributions Fk. Parameters �k are estimated
rom observations using an estimator �̂k. The model of population
ynamics is here considered as an application � fromRm intoRp that
aps a vector of parameters � with length m onto a prediction �(�).

or aggregation of species to be possible, all species must have the
ame model of population dynamics. Which makes the difference
f predictions between two species is the different values of their
arameters. This implies that all species have the same number of
arameters: for all k, the length of the vector �k is m. As parameters
re estimated, the prediction for species k using population dynam-
cs model � is a random variable �(�̂k) whose distribution follows
rom Fk (Fig. 1).

Let g be an integer between 1 and s. A grouping into g groups of
pecies is defined as a surjective application �g from {1, . . . , s} into
1, . . . , g}. For a given g, the number of possible groupings is given
y Stirling second kind number Sg

s (Sloane, 2004; Abramowitz and
tegun, 1964, p. 824). For a fixed g, Sg

s ∼gs/g! when s → ∞, which
hows that Sg

s grows very quickly. Notice that S1
s = Ss

s = 1: �1 groups
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

ll species into a single group, whereas �s is the identity. Basically,
he question raised by this study is whether there exists a grouping
etter than �s, where “better” refers to the accuracy of the model’s
redictions. A grouping �g permits to pool observations by groups.
et n∗

l
=

∑
k ∈ �−1

g (l)nk be the number of observations for group l,
Fig. 1. Aggregation and chain prediction diagram for grouping species according to
a model of population dynamics.

and �̂∗
l

be the estimator of the model parameters for group l (where
l = 1, . . . , g).

Let ˛g be a disaggregation operator from the g groups into the
s species. This is an application from Rp×g into Rp×s that maps the
predictions for the g groups into predictions for the s species. When
grouping species, the prediction for a given species is actually con-
founded with that for the group to which it belongs. It is thus natural
to define the disaggregation operator as

˛g(y1, . . . , yg) = (y�g (1), . . . , y�g (s))

for any prediction yl ∈Rp. This operator thus duplicates the predic-
tion for a group as many times as there are species in this group.

2.1.2. Disaggregation error
The disaggregation error measures the gap between the predic-

tions at the species level when the aggregation diagram shown in
Fig. 1 is browsed clockwise (following arrows 4, 7, 8 and 6) or anti-
clockwise (following arrows 2 and 3). For a given species k, let Yik

denote the ith component of the prediction for species k following
arrows 2 and 3 in Fig. 1; let l = �g(k) denote the group to which
this species belongs; and let Y∗

il
denote the ith component of the

prediction for group l following arrows 4, 7 and 8. A natural way
of measuring the gap between random variable Yik and random
variable Y∗

il
is

E
[(

Y∗
il − E(Yik)

)2
]

= Var(Y∗
il ) +

[
E(Y∗

il ) − E(Yik)
]2

(1)

The first term corresponds to the variance for group l whereas
the second term corresponds to the square bias for group l with
respect to species k. Summing these contributions over all s species
and all p components of the prediction gives the following expres-
sion for the disaggregation error ε : ε(�g) = E(D� D), where �
denotes the transpose and D is the vector of length p × s defined
by

D = ˛g

(
�(�̂∗

1), . . . , �(�̂∗
g)

)
− E

(
�(�̂1), . . . , �(�̂s)

)
(2)

For a given number of groups g, the optimal grouping is the one
that minimizes the disaggregation error:
a model of population dynamics and aggregation theory. Ecol. Model.

�opt
g = argmin

�g

ε(�g) (3)

This optimum is to be found among the Sg
s possible groupings. As

this number is very large even for small values of g (for instance

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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2
94 is close to 1028), it is not possible to compute ε(�g) for every
rouping �g . The optimization problem was thus solved using a
ombinatorial optimization algorithm.

.1.3. Computation of the disaggregation error
As shown by Eq. (1), computation of the disaggregation error

nvolves computing the expectation and variance of the model’s
rediction. This may be achieved in the most general case using
ootstrap, which basically consists in replacing the unknown distri-
utions Fk in Fig. 1 by the empirical distribution of the observations
Efron and Tibshirani, 1993). However, bootstrap is a simulation-
ased method that can lead to very long computing time when
ombined with the combinatorial optimization algorithm used
o minimize the disaggregation error. An approximate but much
uicker method consists in using the ı-method, which permits to
ompute the first two moments of �(�̂) from the first two moments
f �̂ using a Taylor expansion of � (Kendall and Stuart, 1977, pp.
46–247).

A particular but important case is when the estimator �̂ is pro-
ortional to the mean of observations: �̂ ∝ (

∑n
i=1Xi)/n. Then �̂∗

l

or group l is the weighted mean of the �̂k for species k ∈ �−1
g (l),

sing nk/n∗
l

as the weight for species k: �̂∗
l

=
∑

k ∈ �−1
g (l)wk�̂k, where

k = nk/n∗
l
. This implies that:

(�̂∗
l ) =

∑

k ∈ �−1
g (l)

wk E(�̂k) (4)

ar(�̂∗
l ) =

∑

k ∈ �−1
g (l)

w2
k Var(�̂k) + 1

n∗
l

∑

k ∈ �−1
g (l)

wk[E(�̂k) − E(�̂∗
l )]

2
(5)

Hence, in the particular case where the estimator is an empir-
cal mean of the observations, the expectation and variance of
he parameters for the groups can be directly computed from the
xpectations and variances of the parameters for the species, with-
ut turning back to the observations. This shortcut is shown by
rrow 5 in Fig. 1, and permits to considerably speed up computa-
ions when applicable.

.2. Application to Usher matrix models

The method presented in the previous paragraph is general and
an be applied to any model of population dynamics. We now apply
t to the Usher model, that is a matrix model for size-structured
opulation dynamics (Usher, 1966, 1969; Caswell, 2001). The Usher
odel relies on a description of the population by a vector N(t) of

ength K giving the number of individuals in K size classes at time t.
ime is discrete and indexed by integers. Between two successive
ime steps, an individual may either stay alive in the same size class,

ove up to the next class, or die. Moving backwards or growing
p by more than one class is not allowed. This Usher assumption
esults in the following recurrence equation on N(t):

(t + 1) = U N(t)

here U is the Usher transition matrix, that is a K × K matrix with
on-null elements on its main diagonal, its sub-diagonal and its
rst row:

=

⎛
⎜⎜

q1 + f1 f2 · · · fK
p1 q2 0

⎞
⎟⎟
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

⎝ . . .
. . .

0 pK−1 qK

⎠

here fi is the recruitment rate in class i, qi is the probability of
taying alive in class i, and pi is the probability of being alive and
 PRESS
lling xxx (2009) xxx–xxx 3

growing up from class i to i + 1. These probabilities can be written
as qi = (1 − p�

i
)(1 − mi) and pi = p�

i
(1 − mi) for i = 1, . . ., K, where

mi is the mortality rate in class i and p�
i

is the conditional probabil-
ity of growing up from class i to i + 1 knowing that the individual
stays alive (where, by convention, p�

K = 0). For sake of simplicity,
we shall assume here that recruitment rates, mortality rates and
upgrowth rates are the same in all classes (the extension to vary-
ing rates by class is straightforward): f1 = . . . = fK = f , m1 = . . . =
mK = m, and p�

1 = . . . = p�
K−1 = p�. The vector � of parameters then

is � = (f, m, p�).
An observation corresponds to the state of a tree at two succes-

sive time steps. It can take four values: the tree is recruited between
the two time steps (denoted “0”), the tree dies between the two
time steps (denoted “†”), the tree stays alive and grows up to the
next class (denoted “1”), or the tree stays alive in the same class. The
distribution of observations is based on the Bernoulli distribution:
for species k, the distribution of observation Xk between the two
values 0 and /= 0 is a Bernoulli distribution with parameter f; con-
ditionally on Xk /= 0, the distribution of Xk between the two values †
and /= † is a Bernoulli distribution with parameter m; conditionally
on Xk /∈ {0, †}, the distribution of Xk between the two values 1 and
/= 1 is a Bernoulli distribution with parameter p�.

The estimator of �k for species k is the proportion estimator
(Michie and Buongiorno, 1984):

where Xik is the ith observation for species k, is the indicator
function for proposition p (= 1 is proposition p is true and 0 if p is
false), is the number of recruited trees, and

is the number of dead trees for species k. The
proportion estimator is unbiased (E(f̂k) = fk, E(m̂k) = mk, E(p̂�

k
) =

p�
k
), and its variance follows from the variance of the Bernoulli

distribution:

Var(f̂k) = fk(1 − fk)
nk

Var(m̂k|F0k) = mk(1 − mk)
nk − F0k

Var(p̂�
k
|F0k, F†k) = p�

k
(1 − p�

k
)

nk − F0k − F†k

Two predictions of the model were used to classify species (and
thus two distinct classifications were built). The first one was the
vector of parameter estimates � = (f, m, p�) itself, i.e. � was taken
as the identity function from R3 into R3. The second one was the
asymptotic population growth rate, denoted �, that corresponds to
the dominant eigenvalues of U (Caswell, 2001). Assuming that the
vital rates are the same in all classes, it can be shown that

det(U − �I) = (q − �)K−1(1 − � + f − m)

where I is the K × K identity matrix and � ∈R (computations are
not shown to save space). Then � = 1 + f − m.

As the estimator of � is of the mean type, so is the estimator of �.
a model of population dynamics and aggregation theory. Ecol. Model.

Then, both for � and �, the disaggregation error could be computed
using (4) and (5). In other words, arrow 5 in Fig. 1 was defined, and
the disaggregation error was computed from the paths defined by
arrows 5, 8, 6 on one hand, and by arrow 3 on the other hand, thus
circumventing arrows 2, 4, and 7.

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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.3. Combinatorial optimization algorithm

The optimization problem (3) was numerically solved for each
using a simulated annealing algorithm (Kirkpatrick, 1984; Press

t al., 1992, Section 10.9). At each iteration of the algorithm, a trial
rouping is defined by assigning a species taken at random to a
roup taken at random. This assignment must not deplete a group.
hus the species to assign must be chosen among the groups with at
east two species. The disaggregation error εtrial for this trial group-
ng is computed and compared to the current one ε. If εtrial < ε, the
rial grouping is accepted as the current grouping. Otherwise, the
rial grouping is accepted with probability exp[(ε − εtrial)/T], where
is a control parameter of the algorithm. This control parameter

s gradually lowered following a stepwise scheme, thus gradually
orbidding the transitions that increase the disaggregation error. At
ach step, the control parameter is multiplied by ˛ < 1. Between
wo steps, q iterations are performed. The initial value T0 of the con-
rol parameter is computed so that 80% of the trial groupings are
nitially accepted (Kirkpatrick, 1984). The algorithm stops when
he control parameter reaches a prescribed value Tf , or when q′

terations have been performed without any change of the dis-
ggregation error. We used: ˛ = 0.9999, Tf = T0 × 10−7, q = 100
terations, and q′ = 20 000 iterations. All computations were imple-

ented in C language interfaced with R software (R Development
ore Team, 2005). The code is available as supplementary material
see Appendix A).

.4. Study site

.4.1. Paracou experimental site
Data for this study comes from the Paracou experimental site

5◦18′N, 52◦23′W) in French Guiana. The site lies in a terra firme
ain forest on the coastal plain with equatorial climate. A dry sea-
on occurs from August to mid-November. From March to April, a
hort drier period interrupts the rainy season. The physiography
f the site shows smooth slopes incised by minor streams. Part
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

f the site is covered by permanently waterlogged areas. Species
ichness and abundance distribution at Paracou is typical of tropi-
al rainforests, with many tree species, few abundant species and
any rare species (Fig. 2). The rank-abundance diagram shown in

ig. 2 has a classical S-shape (using logarithm for y-axis) that is

ig. 2. Rank-abundance diagram for the 180 taxonomic groups found in the control
lots of the Paracou experimental site in 1993 and 1995. As some taxonomic groups

nclude more than one species, the number of species is actually greater than 180.
og-transform is used for the y-axis. The horizontal grey line corresponds to the
inimum abundance of the species retained for this study.
 PRESS
elling xxx (2009) xxx–xxx

consistent with a log-normal distribution for abundances (Hubbell,
2001).

Paracou is an experimental site dedicated to studying the effects
of logging damage on stock recovery. The experimental design
was set up in 1984 and consists of three blocks of four 300 m
×300 m permanent sample plots with a 25 m inner buffer zone.
Three types of sylvicultural treatments of increasing intensity,
combining selective logging and additional thinning, were applied
between 1986 and 1988 to nine plots. The three other plots were
left as control. In each central 250 m × 250 m square, all trees
over 10 cm dbh (diameter at breast height) were identified and
georeferenced. Since 1984, girth at breast height, standing deaths,
treefalls and newly recruited trees over 10 cm dbh have been mon-
itored annually, and every two years since 1995 (Gourlet-Fleury
et al., 2004). Data collected in 1993 and 1995 on control plots
were used for this study. Only species with at least 20 individ-
uals were retained for this study. Ninety-four species were thus
kept out of the 180 taxonomic groups found in the control plots
in 1993 (Fig. 2). For each species, the Usher model was calibrated
using K = 6 diameter classes with breakpoints 10, 20, 30, 40, 50 and
60 cm.

2.4.2. Comparison with existing species groupings
Previous species groupings have been defined at Paracou by

Favrichon (1994) and Gourlet-Fleury and Houllier (2000). Favri-
chon defined five groups by using a k-means cluster analysis on
various structural (mean diameter in control plots) and demo-
graphic parameters, including mean diameter increments by
diameter class in the control and logged plots, and recruitment
rates in the logged and control plots. Gourlet-Fleury and Houllier
defined 15 groups, using a single tree distance dependent growth
model. They iteratively clustered species such that no species effect
remained on the residuals of a regression model including diame-
ter and local competition indices. Thus, while Favrichon’s groups
encapsulated a general information on dynamics, the groups of
Gourlet-Fleury and Houllier were based on growth and reaction
to local competition.

Those authors used a larger data set than that used here,
including more species. The species grouping defined from the
disaggregation error was compared to Favrichon’s and Gourlet-
Fleury and Houllier’s groupings using a Monte Carlo permutation
test using the 	2 statistic as the test statistic. This 	2 statistic was
computed on the contingency table giving the number of species
in common to each combination of groups from the two group-
ings: if sij is the number of species shared in common between
the ith group of the first grouping and the j th group of the sec-
ond one, then the test statistic is

∑g1
i=1

∑g2
j=1(sij − s�

ij
)2/s�

ij
, where

s�
ij

= (
∑

ksik)(
∑

lslj)/s, s is the number of species, g1 is the number
of groups in the first grouping, and g2 is the number of groups in
the second one. The p-value was computed by Monte Carlo simu-
lation.

We also compared the species grouping defined from the dis-
aggregation error to the grouping obtained by hierarchical cluster
analysis using the Euclidean metrics for computing the distance
between species and Ward’s method for clustering. Ward’s (1963)
method computes the distance between two groups of species as
the increase in the sum of squared errors (SSE) after merging the
two groups into a single one, where the SSE of a set of n val-
ues is the sum of squares of the deviations from the mean value.
Ward’s method seeks to choose the successive clustering steps so
a model of population dynamics and aggregation theory. Ecol. Model.

as to minimize the increase in SSE at each step, thus providing an
approximate minimum of the within-group variance. The hierar-
chical cluster analysis was based on the table giving the estimates
of f, m and p� for each species. Each column of this table was cen-
tred and scaled prior to the analysis. This table was also analysed

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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Fig. 5. Disaggregation error as a function of the number of groups g for the 94 species
at Paracou, when classifying species on the basis of their vital rates: black dots indi-
cate the minimum disaggregation error ε(�opt

g ); triangles indicate the contribution

of square bias to ε(�opt
g ); squares indicate the contribution of variance to ε(�opt

g );
white dots indicate the disaggregation error ε(
g ) for randomly selected groupings

Thus, on the basis of the disaggregation error, making no groups

F
c

ig. 3. Correlation circle of the principal component analysis (PCA) of vital rates for
4 tree species in undisturbed forest: f is recruitment rate, m is mortality rate, and
� is upgrowth rate.

sing a principal component analysis (PCA), and the plane formed
y the first two axes of the PCA was used to graphically represent
he species and their groups.

. Results

.1. Species characteristics

Fig. 3 shows the correlation circle of the PCA of the table giv-
ng the vital rates (f̂ , m̂, p̂�) for each species. The recruitment rate
s positively correlated with the mortality rate, and together these
wo rates define the turnover rate. The turnover rate explains the
rst axis of the PCA. The upgrowth transition rate p̂� is almost

ndependent from the turnover rate and explains the second axis
f the PCA. The mortality rate is actually close to the recruitment
ate for all species, so that the asymptotic population growth rate
= 1 + f − m is close to 1 for all species. Fig. 4a shows the estimates
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

f � for the 94 species at Paracou together with their 95% confidence
nterval computed by bootstrap. Only six species have a � signifi-
antly different from one, which is approximately what one would
e expected under the null hypothesis that � = 1 and a first-order

ig. 4. Asymptotic population growth rate for (a) 94 tree species, and (b) 5 groups of sp
onfidence interval. Black dots indicate the asymptotic growth rates that are significantly
(whiskers correspond to the 95% confidence interval); crosses indicate the disaggre-
gation error for the grouping obtained by hierarchical cluster analysis using Ward’s
method; the star is the disaggregation error for Favrichon’s grouping; and the clover
is the disaggregation error for Gourlet-Fleury and Houllier’s grouping.

risk of rejection of 5%. However, the precision of estimation of � for
each species is low.

3.2. Clustering based on vital rates

In this section we consider the clustering method based on the
vital rates f, m, p�. The disaggregation error is 0.117 for g = 94 (no
grouping of species) and 0.184 for g = 1 (a single group of species).
a model of population dynamics and aggregation theory. Ecol. Model.

of species is a better alternative to pooling all species into a single
group. The white dots in Fig. 5 show the mean disaggregation error
and the dispersion around this mean value that is obtained for each
g when the grouping �g is taken at random among the Sg

s possible

ecies in undisturbed forest. The dot gives the estimate and the whiskers the 95%
different from one.

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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Fig. 6. Disaggregation error as a function of the number of groups g for the 94 species
at Paracou, when classifying species on the basis of their asymptotic population
growth rate: black dots indicate the minimum disaggregation error ε(�opt

g ); triangles

indicate the contribution of square bias to ε(�opt
g ); squares indicate the contribution

of variance to ε(�opt
g ); white dots indicate the disaggregation error ε(
g ) for ran-

domly selected groupings (whiskers correspond to the 95% confidence interval);
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roupings. This mean disaggregation error for randomly selected
roupings monotonically decreases from ε(�1) to ε(�94). Thus, if the
rouping of species is to be made at random, the best option on the
asis of the disaggregation error is not to make groups of species.
he segments shown around the white dots in Fig. 5 indicate the
5% confidence interval for the mean value of ε(
g) where 
g fol-

ows a uniform distribution on {�g}. The width of the confidence
nterval increases from g = 1 to 55, and then decreases.

The black dots in Fig. 5 show the minimum disaggregation error
(�opt

g ) that is the solution of the optimization problem (3) for each
. For 1 < g < 94, this minimum disaggregation error is always
elow the 2.5% quantile of ε(
g), which permits to check that the
ptimal grouping is not like any randomly chosen grouping. For any
greater or equal to 3 and less than 94, ε(�opt

g ) < ε(�94). Hence, on
he basis of the disaggregation error, it is always possible to find a
rouping into g groups with 3 ≤ g < 94 that is a better alternative
o making no groups of species. Starting from g = 1, the minimal
isaggregation error ε(�opt

g ) first decreases sharply as g increases,
hen reaches a plateau, and finally increases until g = 94. The mini-

um value of ε(�opt
g ) is obtained for g = 26 groups where it equals

(�opt
26 ) = 0.045, and ε(�opt

g ) remains below 0.05 for g in the range
2–52.

Fig. 5 also shows the contributions of square bias and of variance
o the disaggregation error. As expected, square bias decreases as g
ncreases, whereas variance increases as g increases. Square bias is
ery high for g = 1 group, whereas variance is close to 0 for g = 1.
quare bias sharply decreases until g = 15. For g ≥ 15, square bias
lowly decreases until g = s where it vanishes. On the contrary,
ariance increases with g. The domain 12 ≤ g ≤ 52 where ε(�opt

g ) is
lmost flat corresponds to a domain where the decrease of square
ias and the increase of variance almost cancel out. The value g = 26
hus corresponds to the best trade-off in terms of disaggregation
rror between square bias and variance.

The crosses in Fig. 5 show the disaggregation error ε(�W
g ) where

W
g is the grouping that results from hierarchical cluster analy-

is using Ward’s method. For 1 ≤ g ≤ 20, ε(�W
g ) is close to ε(�opt

g ),

hich suggests that �W
g is similar to �opt

g for 1 ≤ g ≤ 20. For g > 20,

(�W
g ) diverges from ε(�opt

g ), but ε(�W
g ) always remain below ε(�94).

ence, hierarchical cluster analysis using Ward’s method is a good
roxy to the optimal grouping �opt

g when the number of groups is
mall (g ≤ 20). Moreover, for 3 ≤ g ≤ 86 and according to the disag-
regation error, making groups using hierarchical cluster analysis
nd Ward’s method is a better alternative to making no groups of
pecies.

Favrichon’s and Gourlet-Fleury and Houllier’s groupings are
hown in Fig. 5 as a star and a clover, respectively. Favrichon’s
rouping into 5 groups yields a disaggregation error that is sig-
ificantly lower than ε(
5) where 
5 is uniformly distributed in
�5}, but is higher than ε(�94). Hence, although Favrichon’s group-
ng is significantly better than a randomly chosen grouping, it is
ot a better alternative to making no groups of species on the basis
f the disaggregation error. Gourlet-Fleury and Houllier’s group-
ng into 15 groups yields a disaggregation error that is significantly
igher than ε(
15) where 
15 is uniformly distributed in {�15}.
onsequently, it is also higher than ε(�94).

.3. Clustering based on population growth rate

In this section we consider the clustering method based on the
symptotic population growth rate �, that is related to mortality
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

nd recruitment, but not to growth, since � = 1 + f − m. The differ-
nce f − m basically gives the imbalance in species turnover. Fig. 6
hows the different components of the disaggregation error for this
lustering method. The pattern is globally the same as for the clus-
ering based on vital rates, so we shall focus on the details that
crosses indicate the disaggregation error for the grouping obtained by hierarchical
cluster analysis using Ward’s method; the star is the disaggregation error for Favri-
chon’s grouping; and the clover is the disaggregation error for Gourlet-Fleury and
Houllier’s grouping.

make a difference. The disaggregation error is 0.0806 for g = 94
(no grouping of species) and 0.0812 for g = 1 (a single group of
species). For any number g of groups, the mean disaggregation error
for randomly selected groupings remains close to this value of 0.08.

The minimum value of ε(�opt
g ) (black dots in Fig. 6) is obtained

for g = 10 groups where it equals ε(�opt
10 ) = 0.012, and ε(�opt

g )
remains below 0.013 for g in the range 7–32. The disaggregation
error that results from hierarchical cluster analysis using Ward’s
method (crosses in Fig. 6) is close to ε(�opt

g ) for 1 ≤ g ≤ 8. Moreover,
for 2 ≤ g ≤ 67 and according to the disaggregation error, making
groups using hierarchical cluster analysis and Ward’s method is
a better alternative to making no groups of species. Favrichon’s
(star in Fig. 6) and Gourlet-Fleury and Houllier’s (clover in Fig. 6)
groupings both perform as a randomly chosen grouping.

3.4. Comparison of groupings for g = 5 groups

Fig. 7 shows the projections of the species together with their
group on the plane formed by the first two axes of the PCA, for
the optimal grouping that minimizes the disaggregation error �opt,�

5
using vital rates, for the optimal grouping that minimizes the disag-
gregation error �opt,�

5 using the asymptotic population growth rate,

for the grouping defined by hierarchical cluster analysis �W,�
5 using

vital rates, and for Favrichon’s grouping. Each species is shown by a
dot that is related to the centroid of the group, where the label of the
group is displayed. The ellipses indicate the dispersion of species
within each group. The locations of the dots in the plots (a)–(d)
a model of population dynamics and aggregation theory. Ecol. Model.

of Fig. 7 are thus the same. Only line segments and ellipses, that
indicate the groups of species, change from one plot to another.

Group 1 of �opt,�
5 is characterized by a low turnover rate. Group

2 is characterized by a high upgrowth rate, contrary to group 3
that is characterized by a low upgrowth rate. Contrary to group 1,

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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ig. 7. Projection of the species together with their group on the plane formed by th
rror on vital rates; the side of the grey grid is 2 in length. (b) Optimal grouping �o

5
rouping in 5 groups as defined by the hierarchical cluster analysis using Ward’s m

roups 4 and 5 are characterized by a high turnover rate. These
wo groups distinguish themselves by the value of their upgrowth
ransition rate: species in group 5 have a higher growth rate than
hose in group 4. There is a significant relationship between the
rouping �opt,�

5 that minimizes the aggregation error on vital rates

nd the grouping �W,�
5 defined by the hierarchical cluster analysis

sing Ward’s method (	2 = 217.7, p-value = 0.0005). All groups
ontribute to the 	2 test statistic with a correspondence between
roup i of �opt,�

5 and group i of �W,�
5 for i = 1, . . . , 5 (Fig. 7a and

). There is also a significant relationship between �opt,�
5 and Favri-

hon’s grouping (	2 = 46.2, p-value = 0.003). The most important
ontributions to the 	2 test statistic come from the groups 1, 2,
+ 5 of �opt,�

5 that correspond respectively to the groups 2, 3 + 4, 5
f Favrichon’s grouping (Fig. 7a and d).

The groups of �opt,�
5 (Fig. 7b) are not as well discriminated on the

rst two axes of the PCA as those of �opt,�
5 . However, they do not

verlap on the third axis of the PCA (not shown here), that opposes
pecies for which m > f (and thus � < 1) to the species for which

< f (and thus � > 1). There is no significant relationship between
opt,�
5 and Favrichon’s grouping (	2 = 15.6, p-value = 0.72). How-

ver, there is a significant relationship between �opt,�
5 and �opt,�

5
	2 = 160.7, p-value = 0.0005). The most important contributions
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

o the 	2 test statistic come from the groups 3, 4, 5 of �opt,�
5 that

orrespond respectively to the groups 3, 4, 5 of �opt,�
5 (Fig. 7a and

). Fig. 4b shows the estimate of � for the five groups defined by
opt,�
5 , together with their 95% confidence interval computed by
t two axes of the PCA: (a) Optimal grouping �5 that minimizes the disaggregation
minimizes the disaggregation error on the asymptotic population growth rate. (c)
on vital rates. (d) Favrichon’s grouping in 5 groups.

bootstrap. Four groups out of five have a � significantly different
from one, and the precision of estimation of � is greater than when
considering each species separately.

4. Discussion

4.1. Clustering method

On the basis of the Usher matrix models and for the 94 species
studied at Paracou, the choice of modellers to build groups of
species is justified: for reasonably well chosen groupings, the gain
in variance that results from data pooling over-compensates in
terms of quadratic error for the bias that results from the groups.
The positive balance in terms of quadratic error is obtained for a
large range of number of groups (3 ≤ g < s in the present case) and
for different grouping methods. Only when grouping species into
few groups (g = 1 or 2 in the present case) does bias overcomes
the gain in variance, with a resulting negative balance in terms
of quadratic error. An appropriate grouping method is however
required: when assigning species at random into groups, making
groups of species is never expected to be a better alternative to
making no groups of species.

The disaggregation error formalizes at the species level the
a model of population dynamics and aggregation theory. Ecol. Model.

quadratic error that results for species grouping. This error was
primarily designed to assess if species grouping was justified. How-
ever, minimizing the disaggregation error for a targeted number
g of groups can also be used as a method for building groups of
species. Our study suggests that this method is close to hierarchi-

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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al cluster analysis using Ward’s method for g small enough (here
≤ 20 groups on the basis of vital rates and g ≤ 8 on the basis of

he asymptotic population growth rate). The advantage of our clus-
ering method based on the disaggregation error is that it takes
ccount of the variability of species characteristics. Hierarchical
luster analysis using Ward’s method considers the estimates of
ital rates (or of the asymptotic population growth rate) as fixed.
e thus expect our clustering method to bring different results
hen the variance of species characteristics becomes the domi-
ant component of the disaggregation error. This is precisely what
appens: the value of g where our clustering method departs from
he hierarchical cluster analysis using Ward’s method (that is 20
or vital rates and 8 for the asymptotic population growth rate)
oincides with the number of groups such that the variance com-
onent of the disaggregation error overcomes its bias component
see Figs. 5 and 6).

Alternate definitions of the disaggregation error could be used.
n a previous study (Picard and Franc, 2003), we restrained the
isaggregation error to the square bias, disregarding variance. In
greement with the present study, the square bias resulting from
he optimal grouping �opt

g was a monotonically decreasing func-
ion of g. However, contrary to the present study, no relationship
as found between �opt

g and the grouping obtained by hierarchi-
al cluster analysis using Ward’s method when the disaggregation
rror was restrained to the square bias. Including variance in the
isaggregation error is actually of primary importance from the
odeller’s point of view, as defining groups of species aims at

educing the variance of model’s predictions. Moreover, the def-
nition of the disaggregation error should be adapted when the

odel’s predictions mix variables with different units. The present
efinition of the disaggregation error is sensitive to units. For

nstance, if the model’s prediction is a length given in metres,
e-expressing this length in millimetres will inflate the disaggre-
ation error by a factor 106. Eq. (2) would thus result in different
eights for the variables that compose the model’s prediction �(�)
henever these variables are expressed in different units. The most

eneral expression for D in (2) would be:

= W−1
[

˛g

(
�(�̂∗

1), . . . , �(�̂∗
g)

)
− E

(
�(�̂1), . . . , �(�̂s)

)]

here W is a ps × ps diagonal matrix whose main diagonal contains
ormalizing weights for each variable of the model’s prediction and

or each species. For instance, when variables are expressed in dif-
erent units, the normalizing weight for a variable can be taken as
ts expectation; if the same weight is given to all species, this means
hat the main diagonal of W is E[˛g(�(�̂∗

1), . . . , �(�̂∗
g))]. This is equiv-

lent with replacing square bias by standardized square bias, and
ariance by standardized variance.

A question that was left aside is the number of groups of species
hat should be used. Although the relationship between the num-
er g of groups and the optimal disaggregation error ε(�opt

g ) has a
inimum for some gmin (here gmin = 26 groups), we do not rec-

mmend to use gmin as an optimal number of groups. This number
f groups corresponds to the best trade-off between bias and vari-
nce in terms of quadratic error. It does not take into account of the
umber of parameters in the model of population dynamics at the
roup level. On the contrary, the choice of the number of groups to
se should penalize groupings depending on the number of param-
ters of the model of population dynamics, and thus depending on
. Some criterion based on information theory should be used to
Please cite this article in press as: Picard, N., et al., Clustering species using
(2009), doi:10.1016/j.ecolmodel.2009.10.013

elect the number of groups (Burnham and Anderson, 2002), thus
ielding an optimization problem such as

rg min
g ∈ {1,...,s}

IC(�opt
g )
 PRESS
elling xxx (2009) xxx–xxx

where IC is an appropriate information criterion and �opt
g is an

optimal grouping into g groups of species. This is left for future
work.

4.2. Species groups at Paracou

The comparison of the species groups obtained at Paracou using
our clustering method with other species groups is symptomatic
of the inherent limitations of these statistical approaches for defin-
ing functional groups: different results are obtained depending on
the variables retained to characterize species and, in the present
case, also depending on the model used for forest dynamics. For
instance, the comparison of our grouping based on vital rates and
Favrichon’s grouping (Fig. 7a and d) shows the dependence of the
results on the type of forest stands where data were collected,
and in particular the degree of disturbance that they experienced.
For our grouping, we used only control plots and this is the
reason why recruitment rates and mortality rates were highly cor-
related (Fig. 3). Favrichon (1994) used both control and logged
plots, in which growth rates and recruitment rates were corre-
lated (Delcamp et al., 2008), and the variance of all parameters was
far higher due to a high environmental heterogeneity created by
the logging operations. With this last data set, the behaviour of
pioneers was easier to identify and contrasted with the behaviour
of shade-tolerant species, because more favourable environments
were created for them. This and the fact that Favrichon did not use
mortality rates for his work, clearly explains why his groups do
not fully correspond to ours, particularly along the first axis of the
PCA.

The value of the disaggregation error obtained for the groups
of Gourlet-Fleury and Houllier (2000) illustrates the dependence
of the results on the model of population dynamics used for
predictions. Gourlet-Fleury and Houllier’s groups were built by
minimizing the residual species effect of a particular growth model.
As growth rates are weakly correlated with either the recruit-
ment or the mortality rates (Turner, 2001; Vanclay, 1991b and
see also Fig. 3), by grouping species on the basis of their growth
only, a high intra-group variability for the f and m parameters
(and thus a high ε) can be obtained. This indeed proved to be the
case.

Comparisons with other species groups, such as the groups
defined by Köhler et al. (2003) at the Piste de Saint-Elie Research
Station that is close to Paracou, would be interesting to assess the
relevance of our clustering method. Investigating the ecological sig-
nificance of the various groupings would also shed light on the
relevance of functional types.

The present method for clustering species does not solve the
issue of very rare species. In the application to Paracou, 86 species
or genus with less than 20 individuals were ignored. The appropri-
ate way to deal with such rare species is still an open question. We
reckon that, as these species do not bring much information, they
should not contribute to the definition of the groups, but should
rather be a posteriori assigned to existing groups. As the estimates
of their parameters are very imprecise, it is likely that this assign-
ment be quite uncertain. On the other hand, as the model of forest
dynamics operates at the species level and not at the stand level,
disregarding these species is not an issue as long as one is not
interested in the dynamics of these specific species.

Finally, the modeller’s point of view consisting in minimizing the
quadratic error can yield alternate views to considering all species
a model of population dynamics and aggregation theory. Ecol. Model.

separately. This is illustrated by the variations of the asymptotic
population growth rate � depending on species. The growth rate �
can be taken as a measure of fitness (Caswell, 2001, Section 11.3, p.
295). Testing for equality of fitness between species is an important
matter, for instance for the reconciliation between the neutral and

dx.doi.org/10.1016/j.ecolmodel.2009.10.013
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he niche-assembly theories. It has been advocated that differences
n life-history traits are consistent with the neutral theory as long as
hese differences remain confined to a manifold corresponding to
common fitness value (Hubbell, 2001, chapter 10). In the present
ases, species have different vital rates. When considering species
eparately, the null hypothesis that they all have the same fitness
taking � as a measure of it) cannot be rejected (Fig. 4a), but this

ay be due to a large intra-specific variability. When considering
ppropriate species groups that reduce the variability, differences
n � appear to be significant (Fig. 4b).

ppendix A. Supplementary Data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.ecolmodel.2009.10.013.
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