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a b s t r a c t

Modelling the local density of tropical saplings can provide insights into the ecological processes that drive
species regeneration and thereby help predict population recovery after disturbance. Yet, few studies
have addressed the challenging issues in autocorrelation and zero-inflation of local density. This paper
presents Hierarchical Bayesian Modelling (HBM) of sapling density that includes these two features.
Special attention is devoted to variable selection, model estimation and comparison.

We developed a Zero-Inflated Poisson (ZIP) model with a latent correlated spatial structure and com-
pared it with non-spatial ZIP and Poisson models that were either autocorrelated (Spatial Generalized
Linear Mixed, SGLM) or not (generalized linear models, GLM). In our spatial models, local density autocor-
relation was modeled by a Conditional Auto-Regressive (CAR) process. 13 explicative variables described
ecological conditions with respect to topography, disturbance, stand structure and intraspecific pro-
cesses. Models were applied to six tropical tree species with differing biological attributes: Oxandra
asbeckii, Eperua falcata, Eperua grandiflora, Dicorynia guianensis, Qualea rosea, and Tachigali melinonii.
We built species-specific models using a simple method of variable selection based on a latent binary
indicator.

Our spatial models showed a close correlation between observed and estimated densities with site spa-
tial structure being correctly reproduced. By contrast, the non-spatial models showed poor fits. Variable
selection highlighted species-specific requirements and susceptibility to local conditions. Model compar-
ison overall showed that the SGLM was the most accurate explanatory and predictive model. Surprisingly,

zero-inflated models performed less well.

Although the SZIP model was relevant with respect to data distribution, and more flexible with respect
to response curves, its model complexity caused marked variability in parameter estimates. In the
SGLM, the spatial process alone accounted for zero-inflation in the data. A refinement of the hypothe-
ses employed at the process level could compensate for distribution flaws at the data level. This study
emphasized the importance of the HBM framework in improving the modelling of density–environment
relationships.
. Introduction

The population dynamics of tropical tree species involves
ultiple and heterogeneous processes. These biotic and abiotic pro-

esses, such as competition and disturbance, are of a particular
mpact on the spatial patterns of early life-stages. These patterns
ntegrate not only species preferences, but also some dispersal sig-
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

al which blurs as mortality filters come into operation (Wang and
mith, 2002). Because of this complexity, and particularly in early
ife-stages, spatial patterns constitute the subject of studies used to
raw ecological inference (Austin, 2002). The analysis of these spa-
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tial patterns can be valuably conducted in a modelling approach
(Guisan and Zimmermann, 2000).

The modelling approach developed here follows the general
framework proposed by Austin (2002) which integrates three inter-
acting conceptual components. First, the ecological model addresses
ecological theory in a given system. When species distributions
are concerned, the individualistic community scheme sets a rel-
evant model in which each species interacts with its environment
through intrinsic rules (Guisan and Zimmermann, 2000). Second,
the data model describes the studied system through designed
ffsets zero-inflation in models of tropical saplings density. Ecol.

response and explicative variables. In most studies of tree species
distribution, the response variable is presence/absence. Fewer stud-
ies tackle the local density of conspecifics, especially in tropical
rainforests (but see Svenning et al., 2006). This kind of response
variable induces zero-inflation which occurs when the frequency
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f zero observations exceeds that expected in a classical distribu-
ion. Also, in tropical forests, marked heterogeneity in space and
ime makes it difficult to define and measure relevant explicative
ariables. Indirect explicative variables often serve as proxies that
uantify ecological processes and direct (physiological) or resource
radients (Guisan and Zimmermann, 2000). The third and final
omponent, the statistical model, defines the relationships between
ata model variables and the methods used for their analysis.

In this contribution we focused on the statistical model of
ustin’s framework in order to develop models of sapling density
hat include the issues raised by the data model: zero-inflated count
ata, numerous explicative variables, and spatial autocorrelation.
ero-inflation is a common feature of data in many domains and has
ecently received particular attention (Martin et al., 2005) in ecol-
gy. Null observations have different causes: (i) “structural” zeros
elate to the absence of a species in unsuitable habitats or because
t is scarce (Welsh et al., 1996), whereas (ii) “random” zeros arise by
hance from ecological processes (e.g. dispersal limitation), or sam-
ling or observer error (Martin et al., 2005). True zeros (structural or
andom) arise from ecological processes, whereas false zeros stem
rom sampling. True zeros are particularly likely to arise in trop-
cal forests, due to vegetation features: extreme species richness
mplies low specific densities, even in abundant species, and a high
requency of rare species. Focusing on a particular life-stage may
lso induce zero-inflation because of low abundance.

Zero-inflated (ZI) models are a special case of finite-mixture
odels that mix two distributions to account for dispersion in

ata. ZI models offer statistical robustness and flexibility in the
hape of response curves (Flores et al., 2006), a central issue in
odelling studies (Guisan and Zimmermann, 2000; Oksanen and
inchin, 2002; Austin, 2007). However, they come at the cost of

dditional complexity over Poisson models. In the conditional ZI
Hurdle) model, structural and random zeros are modeled together
s derived from a binomial process (Ridout et al., 1998). Non-zero
ata are modeled separately through a truncated Poisson (or nega-
ive binomial) distribution (Welsh et al., 1996; Barry and Welsh,
002; Kuhnert et al., 2005). In the mixture ZI model, structural
nd random zeros are considered separately (Martin et al., 2005;
lores et al., 2006) in a two-stage process. A binary (Bernoulli) pro-
ess first determines whether, in a second stage, an observation
roceeds from a degenerated null process (leading to structural
eros) or from a Poisson process (possibly leading to random zeros).
inite-mixture models generalize parametric methods in allow-
ng specification of non-classical data distributions (Richardson
nd Green, 1997). However, various alternative parametric and
on-parametric methods are also available for empirical mod-
llers to tackle these statistical issues. Recently applied methods
nclude generalized linear models (GLM, Guisan et al., 2002; Miller
nd Franklin, 2002; Stephenson et al., 2006), generalized addi-
ive models (GAM, Barry and Welsh, 2002; Guisan et al., 2002;

oisen and Frescino, 2002), classification and regression trees
CART, Moisen and Frescino, 2002; Miller and Franklin, 2002), mul-
ivariate adaptive regression splines (MARS, Moisen and Frescino,
002) and artificial neural networks (ANN, Moisen and Frescino,
002).

Spatial autocorrelation has for many years been recognized
s ubiquitous in ecological field data (Legendre, 1993). It chal-
enges the classical statistical hypothesis of observations being
ndependent. At the same time, explicit modelling of autocorre-
ation may provide insight into unobserved processes at various
cales (Svenning et al., 2006; Miller et al., 2007). It is in tropi-
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

al forests that local density is most likely to be autocorrelated.
ree species often display clumped spatial patterns at a local scale
Condit et al., 2000), because of limited dispersal, facilitation by
onspecifics or patchy habitat requirement. It is noteworthy that
uch clumping may also induce zero-inflation, for instance in a
 PRESS
lling xxx (2009) xxx–xxx

regular sampling design. Autocorrelation can also be handled in
various ways. At a local scale, a random variable often accounts
for some dependence between neighboring observations (Lichstein
et al., 2002; Miller et al., 2007; Svenning et al., 2006). Alterna-
tives, for instance auto-regressive (AR) models, and particularly
the Conditional Auto-Regressive (CAR) model, can account for spa-
tial dependence arising from ecological processes (Lichstein et al.,
2002).

Spatial statistical models can become complex when a mixed
data distribution and/or mixed effects are addressed. The Hierar-
chical Bayesian Modelling (HBM) approach is particularly suited
to such cases (Clark, 2005). The main advantage of HBM over
other approaches is that it accommodates biological complexity
into a series of simple conditional models (Wikle, 2003; Clark,
2005) and provides robust parameter estimates (Angers and Biswas,
2003). The classical hypothesis of independence between observa-
tions is replaced by conditional independence, given hypotheses
on the structure of data covariance. At the same time, the Bayesian
paradigm offers attractive advantages by its ability to integrate prior
knowledge into a model, through prior distributions (Banerjee et al.,
2003), and to provide a posterior parameters distribution instead
of estimated values (Clark, 2005).

When multiple processes are likely to influence the response,
the selection of variables becomes paramount. Explicative vari-
ables can be selected on a subjective basis or with respect to
statistical criteria. Most studies dealing with variable selection use
stepwise procedures based on the Akaike Information Criterion
(AIC). Parameter estimation then lead to difficulties when variables
are numerous, collinear, and when effects are low. Again, an HBM
approach may be an effective method for dealing with the selection
of variables (Clark, 2005). Several methods have been proposed and
may be implemented with varying degrees of difficulty (Dellaportas
et al., 2002). Here, we adopt a simple method based on a binary
latent indicator. Its estimation provides the posterior probability
that an explicative variable improves fitting when included in a
model (Dellaportas et al., 2000; Ntzoufras et al., 2000).

This paper describes the building of a density model based on a
latent CAR layer that drives a spatially structured behavior to a ZI
Poisson data layer. It also compares simple and autocorrelated ver-
sions of Poisson and Zero-Inflated Poisson models based on selected
explicative variables, and addresses model performance and com-
plexity. The issues of zero-inflation, autocorrelation and variable
selection are considered within the HBM framework. The models
used are applied to six tropical tree species differing in shade-
tolerance and dispersal modes in permanent sample plots (PSP)
located in French Guiana. Specific emphasis is placed on investigat-
ing the effects of the local environment and intraspecific processes
on sapling density.

2. Materials and methods

2.1. Study site and focal species

The study was conducted at the Paracou experimental site
(5◦18′N, 52◦23′W) in a terra firme rain forest. The site lies in the
coastal part of French Guiana and is subject to an under equatorial
climate with a wet season and a dry season. A short drier period
interrupts the rainy season from March to April.

The site consists of 300 m × 300 m PSP with a 25 m inner buffer
zone. In each central 250 m × 250 m square, all trees ≥ 10 cm diam-
ffsets zero-inflation in models of tropical saplings density. Ecol.

eter at breast height (DBH) were identified and georeferenced. Girth
at breast height, tree mortality (standing deaths and treefalls) and
recruitment over 10 cm DBH have been monitored annually since
1984. Three treatments were applied over the 1986–1988 period
combining selective logging of increasing intensity and additional

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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oison-girdling. The study described here focused on four adja-
ent PSP (an undisturbed control plot and one treated plot in each
reatment) and on the period 1986–2003.

Six focal species were studied: one shade-loving species Oxan-
ra asbeckii Pulle, R.E.Fr. (Annonaceae), three shade tolerant to
id-tolerant species (Eperua falcata Aublet, Caesalpiniaceae, Eperua

randiflora Aublet, Benth., Caesalpiniaceae, Dicorynia guianen-
is Amshoff, Caesalpiniaceae), and two light-demanding species
Qualea rosea Aublet, Vochysiaceae, Tachigali melinonii, Harms,
aesalpiniaceae). O. asbeckii is a bird-dispersed species of the
nderstorey, with maximal height of 15 m. E. falcata is self-
ispersed and E. grandiflora is gravity-dispersed; both species occur

n the top canopy at a maximal height of 30–35 m (Sabatier, 1983).
. guianensis, Q. rosea and T. melinonii are wind-dispersed species
f the top canopy with emergent trees reaching 40 m. T. melinonii is
he fastest-growing and most light-demanding of the six species.

.2. Data model: ecological descriptors

In 2002–2003, all plants in the four plots with 1 cm ≤ DBH ≤
0 cm were sampled and georeferenced. DBH were recorded in 1-
m classes. Because of large differences in growth potential, tropical
rees spend varying periods of time in early life-stages. Here, we
llowed the sapling stage to be specifically defined in the data
odel. The sapling stage was limited by a species-specific upper
BH limit accounting for average growth during the post-logging
eriod. Sapling DBH classes corresponded to 1–2 cm for O. asbeckii,
–3 cm for E. grandiflora, 1–4 cm for E. falcata, 1–5 cm for D. guia-
ensis, 1–6 cm for Q. rosea and 1–9 cm for T. melinonii. Saplings were
ounted on an exhaustive and regular basis in 10 m × 10 m cells (625
ells per PSP). The observed sapling density in the cells constituted
he studied response variable (n = 2500).

Explicative variables constituted of 13 descriptors of ecologi-
al conditions that control tropical tree species density (Table 1).
hese variables were derived either from a Digital Elevation Model
DEM) of the site (elevation and slope), or from census data for trees
≥ 10 cm DBH, stand variables), calculated on 20-m radius plots
entered on sampling cells. Two static variables described local for-
st structure in 2002: total basal area and basal area of pioneer
axa. Five variables characterized stand dynamics during both log-
ing (1986–1988) and the following recovery period (1988–2003):
our disturbance variables (Table 1) and a variable quantifying
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

ross change in total basal area over the recovery period. The local
isturbance regime was characterized by the mean and standard
eviation of treefall age during the recovery period (Table 1).

Finally, two population variables estimated interactions with
urrounding conspecific trees (Table 1) to account for intra-

able 1
xplicative variables derived from a Digitalized Elevation Model (DEM) of Paracou or from

ype Label Descri

opography Ele Elevati
Slo Slope (

tructure Gpio Basal a
Gtot Total b

ogging disturbance MtfL Basal a
MsdL Basal a

ost-logging dynamics MtfR Basal a
Atf Mean a
SDtfR Standa
MsdR Basal a
dG Chang

opulation variables dna Distan
Gcon Basal a

he period indicates calculus years: 1986–1988 (logging) or 1989–2002 (recovery). Structu
 PRESS
lling xxx (2009) xxx–xxx 3

population and inter-life-stage autocorrelation. First, the distance
from cell center to the nearest adult estimated saplings potential
dispersal distance. Second, the basal area of living conspecific trees
(≥ 10 cm DBH) on the 20-m radius plots accounted for intraspecific
competition. Adults included mature trees, i.e. trees with a DBH
greater than a threshold. DBH at maturity was defined with respect
to species status and confirmed by literature data when possible:
10 cm for O. asbeckii, 25 cm for D. guianensis, and 35 cm for E. fal-
cata, E. grandiflora, Q. rosea and T. melinonii. Adults included living
trees in 2002 and trees either logged during treatment application
or that died naturally during the recovery period.

2.3. Spatial HBM using latent CAR

The HBM approach accommodates complexity in a high-
dimension model through decomposition into a series of simpler
conditional hierarchically defined models (Banerjee et al., 2003;
Clark, 2005): at a given level, inference conditionally relies on
lower-level hypotheses. Three basic levels are mandatory. First, a
data level specifies the conditional distribution of the data Z given
parameters and underlying processes. The hypothesis of condi-
tional independence between observations replaces the classical
hypothesis of complete independence. Second, a process level spec-
ifies the conditional distribution of processes given their own
parameters. Third, a parameter level specifies the prior distribu-
tions of remaining parameters (Wikle, 2003). The purpose of the
Bayesian analysis is then to estimate the posterior distribution of
the parameters conditional on the data.

A major issue in spatial modelling is to describe correctly the
covariance structure of the data. In the sections below, we present a
Zero-Inflated Poisson (ZIP) model and its spatial version. The spatial
ZIP (SZIP) includes fixed effects and a spatially structured random
effect (Fig. 1 a) which models autocorrelation in the response that
cannot be explained by fixed effects only. We then briefly describe
spatial Poisson models. Finally, we focus on the selection of vari-
ables (Fig. 1b), and model calibration and comparison using four
criteria.

We modelled the distribution of sapling density as a special
case of finite mixture distribution, i.e. the ZIP distribution (Lambert,
1992). In the mixture ZIP model, the distribution of observed data
Z follows a mixture of a zero-point mass distribution (modelling
structural zeros) and a Poisson distribution P(�). The model assigns
an unknown mass of ω (0 ≤ ω ≤ 1) to structural zeros and a mass of
ffsets zero-inflation in models of tropical saplings density. Ecol.

(1 − ω) to the Poisson distribution. The probability function of the
model is

P(Z = zi|ω, �) =
{

ω + (1 − ω)P(Z = 0|�) if zi = 0
(1 − ω)P(Z /= 0|�) if zi > 0, i = 1, . . . , n

census data of trees ≥ 10 cm DBH (units in brackets).

ption Period

on (m) –
◦)

rea of pioneer taxa (m2) 2002
asal area (m2)

rea lost in treefalls (m2) 1986–1988
rea lost in standing deaths (m2)

rea lost in treefalls (m2) 1989–2002
ge of treefalls (year)
rd deviation of treefalls ages (year)
rea lost in standing deaths (m2)

e in basal area (m2)

ce to nearest adult (m) 2002
rea of conspecific trees ≥ 10 cm DBH (m2)

re and population variables were calculated in 2002.

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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Fig. 1. Directed acyclic graphs of the most complete models: (a) Zero-Inflated Pois-
son model with random spatial effect, (b) Zero-Inflated Poisson model with binary
indicator for variable selection. The models are presented in the four-level HBM
scheme including data, process, parameter and hyperparameter levels (Wikle, 2003).
Observed or deterministic (defined through an equation, not a distribution) vari-
ables are in rectangles. Unknown variables and unknown parameters are in circles.
Dashed lines indicate latent variables. Z, observed local sapling density; C, latent
binary variable; matrices of explicative variables: X, complete matrices used in vari-
able selection (see Table 1), XP and XB , matrices of selected variables respectively for
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he Poisson distribution with intensity � and the binomial distribution with prob-
bility ω; � and ˇ, regression coefficients; �Band �P , latent binary indicators used
n variable selection; ˛, random spatial effect assigned a CAR prior with parameters
�, �; see text for details).

here n is the number of sampling cells, or, using the mixture
ormulation

(Z|ω, �) = ω × ı0(Z) + (1 − ω)P(Z|�)

here ı0(Z) is the Dirac distribution at zero. Here, we introduce a
atent (unobserved) random binary variable, C, indicating whether
he response Z is structurally null or not. C is modelled as the out-
ome of a Bernoulli process: C = 1 leads to structural zeros (i.e.
tructural absence), and C = 0 indicates that Z follows a Poisson
istribution. From Bayes’ theorem, the mixture distribution can be
xpressed as the joint distribution of (Z, C):

(Z, C|ω, �) = P(Z|C = c, ω, �)P(C = c|ω) = ωc[(1 − ω)P(Z|�)]1−c

At the process level, ω, the probability of a zero being structural,
nd �, the intensity of the Poisson process, depends on fixed effects
easured by explicative variables through canonical link functions

McCullagh and Nelder, 1989):

ogit (ω) = B� + � (1)

og(�) = Pˇ + ˛ (2)

here � and ˛ are two intercepts, B and P are two matrices of
elected explicative variables (with variables in common or not),
nd � and ˇ are two unknown vectors of regression parameters.

In our HBM approach, we extended this ZIP formulation to
ccount for autocorrelation between neighboring observations. We
onsidered that the response variable Z is spatialized, and measured
t locations s : Z = Z(s). We assumed that ˛(s) is a random spatial
ffect resulting from a spatially structured but unobserved process
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

see Wikle, 2003). In the SZIP model, at the process level, the Poisson
rocess intensity �(s) thus depended on fixed effects and a random
patial effect:

og[�(s)|ˇ, ˛(s)] = Pˇ + ˛(s)
 PRESS
lling xxx (2009) xxx–xxx

The intensity of the spatial process, ˛(s), can be viewed as the spa-
tial component of � when fixed environmental effects are taken
apart: ˛ = log(E[y]) − Pˇ. It is modeled here as a Gaussian ran-
dom field over a lattice. We used a CAR model (Besag, 1974) for
˛(s) because observations were sampled on a regular grid and we
wanted to account for local autocorrelation. Given a focal location
and its neighborhood, the CAR model is interpreted as follows: if
the response in the neighborhood gives higher than expected val-
ues based on explicative variables, then the focal response will also
be locally higher than the expected value. ˛(s) followed a Gaussian
distribution given intensities in a neighborhood:

˛(si)|˛(sj)j ∈ vi
∼ N

⎛
⎝�

∑
j ∈ vi

wij˛(sj), �2

⎞
⎠ , i = 1, . . . , n (3)

where � and 	 are two unknown parameters, and (wij) is a set of
spatial weights defining neighborhood relationships (see Banerjee
et al., 2003; Wall, 2004 for definition). � is a spatial dependence
parameter measuring the strength of the relationship between the
value of ˛ in a focal cell si and in its neighborhood vi. �2 is the
conditional variance. For each cell, we used a Moore neighborhood
(the chess king’s move).

Finally, the HBM structure of the SZIP model is (Fig. 1a)

data level : Z(s)|�(s)∼ZIP[�(s), ω(s)]
process level : logit[ω(s)|�, �] = B� + �

log[�(s)|ˇ, ˛(s)] = Pˇ + ˛(s)
parameter level : priors for �, ˇ and ˛,
hyperparameter level : priors for � and �

It is straightforward to obtain spatial and non-spatial Poisson
models from this structure.

2.4. Selection of variables

Our selection method, based on that presented in Dellaportas et
al. (2002) and Ntzoufras et al. (2000), uses a binary latent variable
that indicates which explicative variables are included or not in the
model. Let � be the binary latent variable of length p, the number of
candidate variables (p = 13, Table 1), so that �j = 1 indicates that the
jth variable is included in the model (j ∈ 1, . . . , p), whereas �j = 0
excludes the variable. A given model is thus characterized by an
associated vector �, an additional parameter. The linear predictor
B� in Eq. (1) becomes

p∑
j=1

Xij�j�Bj, i ∈ 1, . . . , n

or in matrix form X(� · �B) where · indicates the dot product, X is
the complete matrix of explicative variables of dimensions (n, p)
and the subscript B refers to the binomial distribution (Fig. 1b). A
similar modification applies to the linear predictor Pˇ in Eq. (2). A
major benefit of this approach is that the variables space dimension
remains constant during the selection unlike in Reversible Jump
approaches (Richardson and Green, 1997).

In theory, it is possible to select fixed effects in models with spa-
tial autocorrelation. In practice, several difficulties are encountered.
First, parameter inference requires to develop a complex algorithm
whose convergence can be difficult to assess. Second, the inclusion
of a spatial effect raises identifiability issues: the random effect
ffsets zero-inflation in models of tropical saplings density. Ecol.

could counterbalance fixed effects. Third, the selected variables,
together with the associated fixed effects, are generally different
in spatial models and their non-spatial counterpart (Kneib et al.,
2008). In this contribution, we compared fixed effects with and
without a random spatial effect, which requires explicative vari-

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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bles to be the same in both cases. For these reasons, our variable
election was performed without spatial effect (see Fig. 1b).

.5. Prior choice

Let 
 = (�, ˇ, �, c, ˛, �, �), the complete set of unknown param-
ters and latent variables in the most complete model. At the
arameter level, the definition of weakly informative priors for 

omponents finalizes the definition of the different models.

For �, we retained a p-binomial distribution

�(�) =
p∏

j=1

	�j
j (1 − 	j)

1−�j

where 	j is the probability that the jth variable is present
in the model. When no a priori information is available, 	j =
(1/2), ∀j ∈ {1, . . . , p}, and then �(�) = 2−p.
With regard to regression parameters (� , ˇ), two cases were pos-
sible. In the selection case, we considered a partition of � for
instance into (��, �\�), where �� and �\� correspond to variables
that respectively are included in and excluded from the model.
The prior of � |� was partitioned into a model prior �(��|�) and
pseudoprior �(�\�|�) (see Dellaportas et al., 2002). A symmetri-
cal definition followed for ˇ. Without selection, Gaussian priors
N(0, 100) were assumed for � and ˇ.
The spatial random effect, ˛, was assigned a CAR prior as defined
previously. The prior for the spatial association coefficient, �, was
uniform. To ensure that the CAR model has a proper distribu-
tion, the � parameter needs to be constrained to the interval
[1/�min, 1/�max] where �min and �max are the minimal and max-
imal eigenvalues of D−(1/2)

w WD−(1/2)
w (see Banerjee et al., 2003 for

details). For 1/�2, we used a weakly informative Inverse Gamma
distribution IG(0.1, 0.1).
In our ZIP models, we used a n-binomial distribution for the latentclass variable, C.

.6. Model estimation and comparison

Four models were retained for each species: a simple GLM, a
patial Generalized Linear Mixed (SGLM) model, a non-spatial ZIP
odel, and a SZIP model. We inferred the posterior distribution

f 
, �(
|z) using a Monte-Carlo Markov Chain (MCMC) algorithm.
imulations consisted in sampling 
 components along a Markov
hain through a hybrid sampling algorithm of Metropolis-Hastings-
ithin-Gibbs steps (see Agarwal et al., 2002 for a parallel approach).

Model fitting in each species–model combination consisted in
wo stages. Explicative variables were first selected for each species
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

eparately without a spatial effect. We retained variables for which
he posterior mean of the corresponding components in �̂ was
reater than 0.75. This indicated that these variables had been
etained at least three times out of four along the Markov Chain. In a
econd stage, regression and spatial parameters were estimated in

able 2
utline of sapling density data for the six focal species at the site.

O. asbeckii E. falcata E. grandiflora

2271 807 861
ax 15 17 11

obs 0.908 0.323 0.344
obs 1.570 1.005 0.923

0 58.3 83.3 80.4
0 40.3 72.4 70.9

: total number of saplings, Max: maximal observed sapling density in a 10 m × 10 m cel
f zero counts in sapling density, P0: expected frequency of zero counts in a Poisson distr
 PRESS
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another MCMC run that included only the selected variables. Each
stage consisted of 250,000 iterations from which we discarded a
50,000-iterations burn-in sample. Routines were implemented in
C language and run under R (R Development Core Team, 2008).
Other analyses were also performed with R.

Predictive power was assessed by simulating independent
datasets, which bypasses the need for calibrative and predictive
datasets. In HBM, a common problem with model comparisons
is the number of degrees of freedom (or effective parameters).
Spiegelhalter et al. (2002) suggested comparing hierarchical mod-
els by means of a Deviance Information Criterion (DIC) based on
deviance moments. However, DIC is not invariant to model param-
eterization (Spiegelhalter et al., 2002; Celeux et al., 2006; Raftery
et al., 2007). In this work, we used the classical Spearman’s correla-
tion coefficient, and three Bayesian comparison approaches that are
independent of model parameterization (see Appendix B for details
about criteria).

The first Bayesian criterion, AICM, is an extension of AIC to
Monte-Carlo inference based on the Bayes Factor (Raftery et al.,
2007). Second, we computed the posterior predictive loss described
by Gelfand and Ghosh (1998), D1, using replicate data conditional
on the posterior distribution of observations (see Appendix B for
a detailed definition of criterion). Third, we calculated a posterior
predictive p-value (pppc, see Appendix B) based on the posterior pre-
dictive check described by Gelman et al. (1996), which also requires
simulated replicates of the data. Values of pppc that are close to 0
or 1 tend to indicate model rejection (Gelman et al., 1996). The best
model should give a pppc of 0.5. Spearman’s coefficient and AICM
reflect model goodness-of-fit, whereas D1 and pppc address model
predictive power (Guisan and Zimmermann, 2000; Banerjee et al.,
2003).

3. Results

3.1. Observed densities

Zero-inflation varied across species, with zero-frequencies
between 58% for O. asbeckii and 87% for T. melinonii, compared with
40.3% and 78.2% expected for a Poisson distribution with intensity
equal to the average observed density (Table 2). O. asbeckii was the
most abundant species with 2271 identified saplings. By contrast,
D. guianensis and T. melinonii were the lowest in total numbers (615
and 616) and showed the lowest maximal densities (8 and 11). Q.
rosea was the most abundant species locally (max.: 34, tot.: 1197)
and also the most variable in density. E. falcata and E. grandiflora
occurred in 17% and 20% of the cells, respectively, with 17 and 11
saplings at maximal densities (tot.: 807 and 861).

3.2. Model comparison
ffsets zero-inflation in models of tropical saplings density. Ecol.

Regarding the models’ explicative power, the spatial models
(SGLM, SZIP) showed a closer agreement between observations and
fitted densities that did the non-spatial models (ZIP and GLM) with
respect to Spearman’s correlation coefficient (�s, Table 3). The spa-

D. guianensis Q. rosea T. melinonii

615 1197 616
8 34 11
0.246 0.479 0.246
0.735 1.915 0.870

84.5 84.6 86.9
78.2 61.9 78.2

l, �obs, Vobs: observed mean and variance of sapling density, f0: observed frequency
ibution with intensity �obs.

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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Table 3
Comparison statistics of estimated models.

˛ �s |AICM| D1 pppc

P ZIP P ZIP P ZIP P ZIP

O. asbeckii ∅ 0.43 0.44 6556 6135 4756 6000 � 0 � 0
CAR 0.76 0.74 6028 6077 3379 3696 0.73 0.76

E. falcata ∅ 0.48 0.49 3072 2742 1896 2249 � 0 � 0
CAR 0.62 0.60 2776 2699 1203 1396 0.59 0.74

E. grandiflora ∅ 0.41 0.42 3403 3184 1743 2097 � 0 � 0
CAR 0.64 0.63 3248 3309 1274 1329 0.67 0.66

D. guianensis ∅ 0.28 0.29 3187 2797 1267 1691 � 0 < 10−1

CAR 0.60 0.57 2672 3073 905 1153 0.75 0.74

Q. rosea ∅ 0.32 0.32 4523 3390 4675 8757 � 0 � 0
CAR 0.69 0.69 2591 2626 1768 1858 0.64 0.68

T. melinonii ∅ 0.20 0.19 3408 2820 1546 2306 � 0 � 0
CAR 0.55 0.55 2498 2531 918 919 0.60 0.61

�s: Spearman correlation coefficient between observations and fitted values, |AICM|: absolute value of the Akaike Information Criterion Monte-Carlo (Raftery et al., 2007);
a predi
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models in O. asbeckii). Most of the variables selected were common
across Poisson and zero-inflated models although differences arose
in all species (Fig. 4). Overall, the selection procedure retained fewer
explicative variables in zero-inflated than in Poisson models. Some
variables retained in Poisson models had no influence on sapling
ll computed values were negative, D1: variance-orientated value of the posterior
-value; the closer to 0.5, the better the predictive power of the model (Gelman et a
CAR-prior random effect. P indicates Poisson-distributed models, and ZIP indicates

he best models. � 0 indicates values < 10−4.

ial models gave lower absolute AICM values than the non-spatial
odels, except in E. grandiflora. In the non-spatial models, the
arked variability of the log-likelihood along the Markov Chain

nduced high values for |AICM|. Absolute values of AICM were low-
st for SGLM in four species, for the SZIP model in E. falcata, and for
he ZIP in E. grandiflora (Table 3). All ZIP models performed better
han the Poisson models (GLM) in the non-spatial case, whereas
or spatial models, SZIP gave higher values than SGLM, except in E.
alcata (Table 3).

Regarding the models’ predictive power, the spatial models also
erformed better than their non-spatial counterpart with regard
o the posterior predictive loss function, D1, and the posterior pre-
ictive check, pppc (Table 3). The Poisson models performed better
han the Zero-inflated models, but in all species, the non-spatial

odels gave values of pppc that were close to 0, indicating model
ejection. Overall, SGLM performed best across all models, and this
ith respect to both D1 and pppc (Table 3).

.3. Comparison of fitted vs. observed patterns

Moran’s I (IM) was calculated as an indicator of local dependence
n sapling density. Here, we used the same neighborhood definition
s in the CAR model. All observed spatial patterns showed positive

M values (Fig. 2) with low variance (< 10−3, not shown) indicating
ositive autocorrelation. Overall, IM values were higher for fitted
han for observed patterns. This finding shows that the modelling
rocess tended to smooth fitted distributions. Still, IM values in the
patial models (SGLM and SZIP) were closer to observed values than
o GLM and ZIP values (Fig. 2). In the non-spatial case, the models
lso failed to account for local maxima in sapling density (Appendix
).

Empirical variograms were calculated in order to analyze spatial
atterns at the site scale. Major change in variograms slopes indi-
ated clumps at various scales (Fig. 3, solid lines). A steep increase
as observed up to about 50 m for D. guianensis and E. grandi-

ora, and up to about 100 m for O. asbeckii. Variograms for Q. rosea
nd E. falcata showed a slow increase up to 200 m, with higher
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

ariability for Q. rosea. The variograms for both species increased
fter 400 m due to isolated clumps (see maps in Appendix C). In
. melinonii, the variogram showed a steep increased in the first
0 m, but the overall spatial structure was less marked in this
pecies.
ctive loss (Appendix B with k = 1, Gelman et al., 2004). pppc: posterior predictive
6). The ˛ column differentiates results from non-spatial (∅) and spatial models with
Inflated Poisson models. For each species and each statistics, bold numbers indicate

Variograms calculated on model residuals showed how the
models accounted for the spatial structure of sapling density. They
were all close to zero and flat in spatial models, indicating no resid-
ual autocorrelation (Fig. 3). Overall, the spatial models were able to
reproduce the spatial structure of sapling density at the local scale.
The spatial structure was also well reproduced at the site scale (see
maps in Appendix C). With regard to the non-spatial models (GLM
and ZIP), the poor agreement between observed and fitted values
induced highly autocorrelated residuals.

3.4. Variables selected and effects

The number of explicative variables chosen during the selec-
tion phase ranged from 5 in D. guianensis (Fig. 4) to 11 (Poisson
ffsets zero-inflation in models of tropical saplings density. Ecol.

Fig. 2. Moran’s I of observed and fitted sapling patterns.

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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ig. 3. Spatial structure at the site scale. For each species, the solid line shows the em
n the residuals of the four models (GLM, SGLM, ZIP, SZIP).

ensity when the zero-inflated distribution was used (e.g. Gpio in E.
alcata, Fig. 4). In fewer cases, variables not retained in the Poisson

odels were retained in the zero-inflated models (e.g. Gcon in E.
randiflora and D. guianensis, Gcon in D. guianensis, Gpio in Q. rosea
nd SDtfR in T. melinonii).

Each of the 13 explicative variables was retained at least once
uring the selection phase, and thus partly explained sapling den-
ity. Topographic variables, elevation, slope or both, were retained
n O. asbeckii, E. grandiflora, D. guianensis and Q. rosea (Fig. 4). Struc-
ural variables (Gcon and Gpio) were retained in all models except
ero-inflated models in E. grandiflora and Poisson models in Q. rosea.
t least one variable characterizing disturbance was selected in all
odels. Population variables were also retained in all models except

n the SZIP in T. melinonii (Fig. 4). dna was not retained only in T.
elinonii.

The comparison of spatial and non-spatial models with similar
istributions showed that parameter estimation was substantially
ltered when autocorrelation was included. The effects of variables,
easured here by the posterior mean of the associated regres-

ion parameters, generally decreased or reached zero (Fig. 4). Here,
e focus on D. guianensis which had the fewest selected vari-

bles. In the best model for this species (SGLM), the most influent
ariables were elevation (Ele) and distance to nearest adult (dna).
hese had respectively a positive and a negative (decrease with
ncreasing distance) influence on sapling density. These findings
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

ndicate a preference for an upper-slope/plateau position and lim-
ted dispersal around adults. The other variables retained were
DtfR, Gtot, and Gpio. The sign of effects indicated that sapling den-
ity was more elevated in cells where treefalls were scattered
ver time, with a low total basal area and a low basal area of
variogram of sapling density (observed), while symbols show variograms calculated

pioneer taxa, suggesting conditions of intermediate disturbance
intensity.

4. Discussion

This study compared spatial Zero-Inflated Poisson models of
sapling local density in a tropical forest with classical GLMs. Over-
all, model performance was enhanced when accounting for spatial
dependence. The CAR model proved well-suited to account for auto-
correlation between adjacent cells. The conditional nature of the
CAR model makes it relevant for HBM, and HBM does appear to
be particularly well adapted in our context. In the spatial models,
the residuals appeared to be uncorrelated, showing that the spa-
tial structure of sapling density was relevantly addressed at the
local scale. Posterior estimates of the dependence parameter (�)
were close to its space boundary, suggesting that alternative mod-
els could be used. For instance, the Simultaneous Auto-Regressive
(SAR) model is formally equivalent to a CAR, but with a dif-
ferent covariance structure (see Keitt et al., 2002; Wall, 2004
for comparisons). Other possibilities include geostatistical mod-
els which primarily rely on a continuous description of space.
However, auto-regressive models are better suited for the study
of area-based data, especially on a regular lattice (Banerjee et al.,
2003).

The SGLM showed greater explicative and predictive power than
ffsets zero-inflation in models of tropical saplings density. Ecol.

the other models in our case study. Adding a latent spatial effect at
the process level of HBM was sufficient to handle both spatial auto-
correlation and zero-inflation. We assumed that this was possible
because the zero observations were autocorrelated in space (see
maps in Appendix C). We suspect that a zero-inflated model would

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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Fig. 4. Explicative variables: selection and effects. The figure shows, for each species and each of the four studied models, the posterior means and standard deviation intervals
of regression parameters associated with selected variables (see text for the variable selection procedure and Table 1 for labels, Int.: intercepts). Shaded bars relate to variables
included in the Poisson distribution (matrix X), filled bars relate to coefficients of variables included in the binomial distribution (matrix B).

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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e more efficient in cases of data with uncorrelated structural
eros.

In the SZIP model, we included autocorrelation in the Poisson
rocess, which produces random zeros and non-zero counts. An
lternative approach could account for dependence in the probabil-
ty of observations to be structural zeros (ω). This may be justified in
pecies with strong habitat specificity, for instance in species exclu-
ively found in waterlogged areas. However, such model structure
eads to instability and poor parameter estimates (Agarwal et al.,
002). Specific sophisticated algorithms are required to address this

ssue.
Zero-inflation may be induced by a number of causes in vegeta-

ion data. These include scarcity of the studied plants and sampling
ariability, but also ecological constraints such as habitat unsuit-
bility or marked clumping. ZIP models have the advantage at
ccounting for these processes and they also allow flexibility in the
hape of the response curve, a critical issue in studies of species
atterns (Guisan and Zimmermann, 2000; Oksanen and Minchin,
002). The two-component or Hurdle model is often advocated
hen facing the mixture specification because parameter interpre-

ation is easier in this case. We preferred the mixture specification
or three reasons. First, in the mixture case, the response curve
o a given predictor can be easily calculated (Flores et al., 2006).
econd, assuming that the processes leading to zero and non-zero
ata are independent may not be relevant to the ecological model.
or instance, habitat suitability is not a binary factor: individuals
urviving in transient habitats imply non-null density. Likewise,
ispersal may induce structural zeros beyond a limiting distance,
hough infrequent long distance dispersal events occur. Dispersal
lso implies random zeros as seeds do not saturate a tree’s influ-
nce area, because of stochasticity. Third, the mixture specification
eparates effects leading to structural and random zeros. Selected
ariables can influence either the binary, or the Poisson process, or
oth.

The saplings in our study appeared to be clumped, which may be
ue to limited dispersal around adults (Svenning, 2001), clumped
eed dispersal (Howe, 1989; Russo and Augspurger, 2004), or a sur-
ival response to patchy resources (Dalling et al., 1998). Svenning
t al. (2006) interpreted the high contribution made by the CAR
omponent to local density as evidence of strong local dispersal.
learly, aggregate dispersal is likely to induce local autocorrelation

n species patterns. However, we would expect the CAR component
o contribute differently across species that display different dis-
ersal modes. No such findings were observed. In light-demanding
pecies (e.g. T. melinonii), autocorrelation may reflect unobserved
nvironmental heterogeneity induced by unobserved disturbance
vents (Nicotra et al., 1999).

In our study, we characterized the environment by means of
ontinuous descriptors of ecological processes such as disturbance.
his approach addressed a common issue in modelling, i.e. a dise-
uilibrium between observed patterns and current environmental
onditions (Guisan and Zimmermann, 2000; Austin, 2002). Overall,
on-null effects were detected in each model-species combination,
nd selected variables changed across species. Designed variables
hus all quantified some aspect of environmental heterogeneity or
opulation process that partly explained sapling density and indi-
ated specific processes. The position of adults influenced sapling
atterns in five species. Whereas no such effect was seen for
he anemochorous and most light-demanding species T. melinonii.
espite mortality filters on earlier stages, a dispersal signal per-

isted in sapling patterns (Clark et al., 1999; Wang and Smith,
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

002). The studied species are known to be rather poor dispersers,
ike the bird-dispersed O. asbeckii (Ulft, 2004), the autochorous
nd barochorous Eperua and D. guianensis despite wind dispersal.
odents secondarily dispersing seeds can increase dispersal dis-
ances (Forget, 1992).
 PRESS
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Variables of past disturbance patterns were particularly infor-
mative, and this is consistent with previous studies of the
spatial heterogeneity of light in tropical forests (Nicotra et al.,
1999). Overall, disturbance effects were consistent with species
shade-tolerance. Species recruitment was differentially affected
by disturbance-induced opening of the canopy. Regarding topog-
raphy, D. guianensis and E. grandiflora are known to mainly
settle on the upper part of slopes and E. falcata on bottom-
lands. Here, E. falcata was weakly affected by topography. In
this species, population variables were sufficiently informative to
mask the effects of physical conditions because of the marked
clumping of saplings around adults. This finding raises the issue
of covariance between explicative variables. Here, we selected
explicative variables from candidates based on an efficient and
stable selection method. We used a prior that favors mod-
els with p/2 variables. Other choices are possible that would
take account of covariance between variables. The influence of
such priors on statistical and ecological inference remains to be
tested.

In modelling studies, the trade-off between model complex-
ity and relevance is a well-known issue. In our case, the SZIP
model appeared to be conceptually relevant as it could account
for two critical features of data, i.e. autocorrelation and zero-
inflation. Empirically, the SGLM model appeared to show the
best performance. This finding shows that refining processes
addressed at the process level of HBM could compensate for sta-
tistical dispersion observed in the data. In other words, a priori
required complexity at the data level was not necessary when
accurate specification occurred at process level. In a predictive con-
text, statistical simplicity may be preferred. Sophisticated models
may nevertheless be required to evidence hidden biological pro-
cesses.
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Appendix A. Site map

See Fig. 5.

Appendix B. Model comparison

The Bayes Factor (BF) is among the common approaches used for
model comparison. It is based on the integrated posterior harmonic
mean of the likelihood:

�(Z) =
∫

f (Z|
)�(
) d
.

which can be approximated by the harmonic mean of the likeli-
hood along a standard Markov Chain Monte-Carlo run (Raftery et al.,
2007). Although �(Z) is consistent as the simulation size increases,
its precision is not guaranteed. Raftery et al. (2007) proposed the
use of a shifted gamma estimator which leads to modified versions
of AIC and BIC. We retained the AICM (M for Monte-Carlo) which
addresses model explicative power, and is defined as
ffsets zero-inflation in models of tropical saplings density. Ecol.

AICM = 2(l̂ − s2
l )

where l̂ and s2
l

are the mean and variance of the log-likelihood along
the chain.

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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Spiegelhalter et al. (2002), Celeux et al. (2006), and Raftery et al.
Fig. 5. Location an

An alternative approach is the posterior predictive loss
escribed by Gelfand and Ghosh (1998) which addresses model
redictive power. It uses the distribution of replicate data condi-
ional on the posterior distribution of observations (the posterior
redictive distribution). We note zrep a replicate dataset simulated
ith sampled values of parameters 
 along the Markov chain. These
ata could have been observed under the studied model with those
alues of 
 (Gelman et al., 1996). Conditional on 
, zrep and z are
ssumed to be independent. The posterior predictive distribution
f replicates is then

(zrep|z) =
∫

p(zrep|
, z)p(
|z) d


he best model then minimizes the posterior predictive loss defined
s

k = k

k + 1
G + P

here

=
n∑

i=1

(�̂i − zi)
2 and P =

n∑
i=1

�̂2
i

here �̂i and �̂2
i

are the mean and variance of the posterior
redictive distribution. The loss function Dk reflects the classi-
al compromise between bias and variance, depending on the
hoice of k: G and P are, respectively, the bias (the goodness of
t) and the variance of the prediction. In the paper, we use the
ariance-orientated loss function D1 = (G/2) + P (k = 1) as a sec-
nd Bayesian criterion. In order to estimate D1, we simulate 100
eplicated data for each of 1000 values of 
 sampled along the chain

(k), k = 1, . . . , 1000).
Please cite this article in press as: Flores, O., et al., Autocorrelation o
Model. (2009), doi:10.1016/j.ecolmodel.2009.01.030

Finally, we derived a last criterion of model validation using
he posterior predictive check approach (Gelman et al., 1996). This
pproach also requires simulated replicates of the data. A dis-
repancy measure based on the residual sum of squares, T(z, 
),
of the study site.

quantified model fit:

T(z, 
(k)) =
∑

i

(zi − E[zi|
(k)])
2

where (k) indicates values sampled along the chain.
The goodness-of-fit of a model is then evaluated by comparing

the posterior distribution of T(z, 
(k)) with the posterior predic-
tive reference distribution T(zrep, 
(k)) (Stern and Cressie, 2000).
We quantified the closeness of two discrepancy measures based on
parameters estimates and either the observations or a simulated
replicate dataset. Graphically, scattering away from the 1:1 line in
the plot of T(z, 
(k)) and T(zrep, 
(k)) indicates that data generated
by the model greatly differ from the observed data, with respect to
T. Numerically, this information can be summarized by a posterior
predictive p-value:

pppc = P[T(zrep, 
) ≥ T(z, 
)]

Values close to 0 or 1 tend to indicate model rejection (Gelman et
al., 1996). In order to estimate pppc, we use the approximation:

pppc =
∑

k

∑
j

I
T(zrep(k)

j
,
(k))≥T(z,
(k))

where j indicates a simulated dataset using parameters 
(k) (j =
1, . . . , 100).

Another common criterion in the comparison of Bayesian mod-
els is the Deviance Information Criterion (DIC, Spiegelhalter et al.,
2002). However, when hidden structures and random effects are
addressed, the definition of the posterior estimates of parame-
ters, 
̄ is not fixed so that DIC depends on model parametrization
ffsets zero-inflation in models of tropical saplings density. Ecol.

(2007), and on a certain focus on the hierarchy (Plummer, 2006).
Although Celeux et al. (2006) proposed several versions of the DIC,
none seems to be well suited to such cases (see discussion in Celeux
et al., 2006 paper).

dx.doi.org/10.1016/j.ecolmodel.2009.01.030
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ppendix C. Density maps
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